Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes

The phylogenetic relationships of both African and South American electric fish orders are reviewed at their intra-ordinal level taking into consideration recent studies in which cladistic principles have been employed. Several concordant topologies emerge from the different data sets, but some unsettled issues still remain. From the studies available, a consensus topology has been suggested for the Mormyriformes and for the Gymnotiformes. Subsequently, the evolutionary relationships of these two electric fish clades are considered within each respective superorder, i.e. in relation to the other osteoglossomorph and ostariophysan orders. The inter-ordinal phylogenies are used as a framework to test the molecular clock hypothesis with two gene fragments of the mitochondrial genome. Gymnotiformes, Siluriformes and Characiformes are accumulating mutations at the same pace in relation to their respective outgroups, but for all the other combinations of sister clades tested the molecular clock can be statistically rejected. Fossil records are then surveyed and used to calibrate absolute rates of genetic differentiation for each main lineage (orders) of both osteoglossomorphs and ostariophysans. The most conserved regions (stems) of the 12S and 16S gene fragments used are evolving at an average rate of 0.123 % 10(6 )years-1 for the osteoglossomorphs and 0.137 % 10(6 )years-1 for the ostariophysans, with no significant difference between these two values. The rate of mutation in the loops, the faster-evolving segments, estimated for closely related electric fish taxa is 0.82 % 10(6 )years-1 for four Brienomyrus species and 1.01 % 10(6 )years-1 for the four eigenmanniid genera. When the entire molecule (loops + stems) is considered, the rate of mutation in both mormyriforms and gymnotiforms converges to a rounded value of 0.23 % 10(6 )years-1.

[1]  D. Rand Thermal habit, metabolic rate and the evolution of mitochondrial DNA. , 1994, Trends in ecology & evolution.

[2]  C. Hopkins,et al.  A systematic revision of the large-scaled Marcusenius with description of a new species from Cameroon (Teleostei; Osteoglossomorpha; Mormyridae) , 1997 .

[3]  J. Albert,et al.  Sternopygus xingu, a New Species of Electric Fish from Brazil (Teleostei: Gymnotoidei), with Comments on the Phylogenetic Position of Sternopygus , 1996 .

[4]  L. Taverne,et al.  Ostéologie, phylogenèse et systématique des téléostéens fossiles et actuels du super-ordre des ostéoglossomorphes , 1975 .

[5]  W. W. Dimmick,et al.  A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. , 1996, Molecular phylogenetics and evolution.

[6]  John C. Avise,et al.  Molecular Markers, Natural History, and Evolution , 1993 .

[7]  M. Triques Tembeassu marauna, new genus and species of electrogenic neotropical fish (Ostariophysi : Gymnotiformes : Apteronotidae) , 1998 .

[8]  W. Wheeler,et al.  Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. , 1988, Molecular biology and evolution.

[9]  W. J. E. Costa,et al.  Description d'une nouvelle espèce de Poisson électrique du genre néotropical Hypopomus (Siluriformes : Gymnotoidei : Hypopomidae) du Sud-Est du Brésil , 1991 .

[10]  J. Pawłowski,et al.  Phylogenetic relationships between Hypostominae and Ancistrinae (Siluroidei: Loricariidae): first results from mitochondrial 12S and 16 rRNA gene sequences , 1997 .

[11]  W. Fink,et al.  Interrelationships of the ostariophysan fishes (Teleostei) , 1981 .

[12]  A. Meyer,et al.  Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. , 1994, Molecular biology and evolution.

[13]  R. Gutell,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. , 1992, Nucleic acids research.

[14]  J. Avise,et al.  A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. H. Bullock,et al.  The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality , 1983, Brain Research Reviews.

[16]  J. Sullivan A phylogenetic study of the Neotropical hypopomid electric fishes (Gymnotiformes: Rhamphichthyoidea) , 1997 .

[17]  H. W. Lissmann,et al.  Continuous Electrical Signals from the Tail of a Fish, Gymnarchus niloticus Cuv. , 1951, Nature.

[18]  K. E. Machin,et al.  The Mode of Operation of the Electric Receptors in Gymnarchus Niloticus , 1960 .

[19]  M. Triques Eigenmannia vicentespelaea, a new species of cave dwelling electrogenic neotropical fish (Ostariophisi: Gymnotiformes: Sternopygidae) , 1996 .

[20]  D. Rosen,et al.  Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fishes. American Museum novitates ; no. 2428 , 1970 .

[21]  J. Lundberg,et al.  African-South American freswater fish clades and continental drift: problems with a paradigm , 1993 .

[22]  F. Meunier,et al.  Ellisella kirschbaumi Gayet & Meunier, 1991, gymnotiforme fissole de Bolivie et ses relations phylogénétiques au sein des formes actuelles , 1994 .

[23]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Ortí CHAPTER 14 – Radiation of Characiform Fishes: Evidence from Mitochondrial and Nuclear DNA Sequences , 1997 .

[25]  K. E. Machin,et al.  The Mechanism of Object Location in Gymnarchus Niloticus and Similar Fish , 1958 .

[26]  M. Triques Iracema caiana, new genus and species of electrogenic neotropical freshwater fish (Rhamphichthyidae: Gymnotiformes: Ostariophysi: Actinopterygii) , 1996 .

[27]  J. Eastman,et al.  Amyzon gosiutensis, a New Catostomid Fish from the Green River Formation , 1982 .

[28]  Mitochondrial DNA rates and biogeography in European newts (genus Euproctus). , 1997, Systematic biology.

[29]  W. Brown,et al.  Rates and patterns of base change in the small subunit ribosomal RNA gene. , 1993, Genetics.

[30]  M. Novacek,et al.  Early Biogeographic History of Ostariophysan Fishes , 1976 .

[31]  N. Galtier,et al.  Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. , 1998, Molecular phylogenetics and evolution.

[32]  P. Moller Electric fishes : history and behavior , 1995 .

[33]  C. Hopkins,et al.  Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organs. , 1997, Brain, behavior and evolution.

[34]  A. Bass Species differences in electric organs of mormyrids: Substrates for species‐typical electric organ discharge waveforms , 1986, The Journal of comparative neurology.

[35]  L. Grande,et al.  The species of Phareodus (Teleostei: Osteoglossidae) from the Eocene of North America and their phylogenetic relationships , 1997 .

[36]  L. Pauling,et al.  Evolutionary Divergence and Convergence in Proteins , 1965 .

[37]  R. Mayden,et al.  Phylogenetic relationships of the western North American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. , 1998, Molecular phylogenetics and evolution.

[38]  John C. Avise,et al.  Molecular Markers, Natural History and Evolution , 1993, Springer US.

[39]  M. Gayet Nouveaux Siluriformes du Maastrichtien de Tiupampa (Bolivie) , 1990 .

[40]  George V. Lauder,et al.  The evolution and interrelationships of the actinopterygian fishes , 1983 .

[41]  G. Arratia Basal teleosts and teleostean phylogeny , 1997 .

[42]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[43]  B. Kramer,et al.  Phylogenetic relationships between eight African species of Mormyriform fish (Teleostei, Osteichthyes): Resolution of a cryptic species, and reinstatement of Cyphomyrus Myers, 1960 , 1996 .

[44]  L. Taverne Note sur la systématique de spoissons mormyriformes. Le problème de sgenres Gnathonemus Gill, marcusenius Gill, hippopotamyrus pappenheim, cyphomyrus Myers et les nouveaux genres pollimyrus et brienomyrus , 1971 .

[45]  Andrew P. Martin,et al.  Rates of mitochondrial DNA evolution in sharks are slow compared with mammals , 1992, Nature.

[46]  G. Boulenger Zoology of Egypt : the fishes of the Nile , 1907 .

[47]  R. Britten,et al.  Rates of DNA sequence evolution differ between taxonomic groups. , 1986, Science.

[48]  R. Gutell,et al.  A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. , 1990, Nucleic acids research.

[49]  L. Taverne Note sur l'ostéologie du genre gymnarchus cuvier (pisces mormyriformes) , 1970 .

[50]  F. Meunier,et al.  Première découverte de Gymnotiformes fossiles (Pisces, Ostariophysi) dans le Miocène supérieur de Bolivie , 1991 .

[51]  R. Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.

[52]  M. Gayet Le plus ancien crâne de Siluriforme: Andinichthys bolivianensis nov. gen., nov. sp. (Andinichthyidae nov. fam.) du Maastrichtien de Tiupampa (Bolivie) , 1988 .

[53]  R. Campos-da-Paz Redescription of the Central American electric fish Gymnotus cylindricus (Ostariophysi: Gymnotiformes: Gymnotidae), with comments on character ambiguity within the ostariophysan clade , 1996 .

[54]  A. Meyer,et al.  Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. , 1995, Molecular biology and evolution.

[55]  H. Shaffer,et al.  THE POLYTYPIC SPECIES REVISITED: GENETIC DIFFERENTIATION AND MOLECULAR PHYLOGENETICS OF THE TIGER SALAMANDER AMBYSTOMA TIGRINUM (AMPHIBIA: CAUDATA) COMPLEX , 1996, Evolution; international journal of organic evolution.

[56]  A. L. Cione The Late Cretaceous fauna of los Alamitos, Patagonia, Argentina. II: The fishes , 1987 .

[57]  L. Guo-qing Chapter 8 – Phylogeny of Osteoglossomorpha , 1996 .

[58]  D. L. Frizzell Otoliths of New Fish (Vorhisia vulpes, N. Gen., N. Sp. Siluroidei?) from Upper Cretaceous of South Dakota , 1965 .

[59]  S. Easteal,et al.  A mammalian molecular clock? , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[60]  C. C. Fernandes,et al.  Magosternarchus, a New Genus with Two New Species of Electric Fishes (Gymnotiformes: Apteronotidae) from the Amazon River Basin, South America , 1996 .

[61]  L. Grande,et al.  Review of Eohiodon (Teleostei: Osteoglossomorpha) from western North America, with a phylogenetic reassessment of Hiodontidae , 1997, Journal of Paleontology.

[62]  M. R. Bradford African, but not Asian, notopterid fishes are electroreceptive: evidence from brain characters , 1982, Neuroscience Letters.

[63]  Robin Ray Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures , 1993, Nucleic Acids Res..

[64]  N. Takahata,et al.  Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Albert,et al.  Gymnotus maculosus, a new species of electric fish (Chordata: Teleostei: gymnotoidei) from Middle America, with a key to species of Gymnotus , 1995 .

[66]  Walter Heiligenberg,et al.  Behavior of Mormyridae , 1986 .