A simple geometric structure optimizer for accelerated detection of infeasible zeolite graphs
暂无分享,去创建一个
[1] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[2] Michael O'Keeffe,et al. What do we know about three-periodic nets? , 2005 .
[3] Julian D. Gale,et al. The General Utility Lattice Program (GULP) , 2003 .
[4] David Olson,et al. Atlas of Zeolite Framework Types , 2007 .
[5] W. M. Meier,et al. Constituent units and framework conformations in zeolite networks , 1982 .
[6] S. Wells,et al. Finding best-fit polyhedral rotations with geometric algebra , 2002 .
[7] William H. Press,et al. Numerical recipes in C , 2002 .
[8] Michael Treacy,et al. Enumeration of periodic tetrahedral frameworks , 1997 .
[9] W. M. Meier,et al. Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen , 1969 .
[10] Igor Rivin,et al. Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .
[11] D. C. Rapaport,et al. The Art of Molecular Dynamics Simulation , 1997 .
[12] M. Boisen,et al. A modeling of the structure and compressibility of quartz with a molecular potential and its transferability to cristobalite and coesite , 1993 .
[13] Stephen A. Wells,et al. Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations , 2005 .
[14] M. Deem,et al. A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.
[15] S. Wells,et al. Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology , 2004 .