A simple geometric structure optimizer for accelerated detection of infeasible zeolite graphs

Abstract We describe a geometric structure optimizer that rapidly establishes whether or not SiO4 units in a hypothetical zeolite framework can exist as minimally-deformed regular tetrahedra. The optimizer, SiGH (Silica General Handler), enables an order of magnitude computational speed gain when processing large databases of zeolite graphs through the early rejection of infeasible graphs.

[1]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[2]  Michael O'Keeffe,et al.  What do we know about three-periodic nets? , 2005 .

[3]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[4]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[5]  W. M. Meier,et al.  Constituent units and framework conformations in zeolite networks , 1982 .

[6]  S. Wells,et al.  Finding best-fit polyhedral rotations with geometric algebra , 2002 .

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[9]  W. M. Meier,et al.  Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen , 1969 .

[10]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[11]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[12]  M. Boisen,et al.  A modeling of the structure and compressibility of quartz with a molecular potential and its transferability to cristobalite and coesite , 1993 .

[13]  Stephen A. Wells,et al.  Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations , 2005 .

[14]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[15]  S. Wells,et al.  Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology , 2004 .