Marginal parameterizations of discrete models defined by a set of conditional independencies

It is well-known that a conditional independence statement for discrete variables is equivalent to constraining to zero a suitable set of log-linear interactions. In this paper we show that this is also equivalent to zero constraints on suitable sets of marginal log-linear interactions, that can be formulated within a class of smooth marginal log-linear models. This result allows much more flexibility than known until now in combining several conditional independencies into a smooth marginal model. This result is the basis for a procedure that can search for such a marginal parameterization, so that, if one exists, the model is smooth.