Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method

For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has been developed. A brief presentation of the implementation of the solver is given here. The new solver is very well suited for the computation of some selected interior eigenvalues related to the resistive Alfven wave spectrum and is well parallelizable. All features of the spectrum are easily and accurately computed with only a few target shifts. (C) 2001 Elsevier Science B.V. All rights reserved.

[1]  van der,et al.  Reordering strategies and LU-decomposition of block tridiagonal matrices for parallel processing , 1996 .

[2]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[3]  D. N. Borba,et al.  Modeling the excitation of global Alfvén modes by an external antenna in the Joint European Torus (JET) , 1995 .

[4]  Auke van der Ploeg,et al.  Parallel Jacobi-Davidson for Solving Generalized Eigenvalue Problems , 1998, VECPAR.

[5]  Ambrogio Fasoli,et al.  Determination of local tokamak parameters by magnetohydrodynamic spectroscopy , 1997 .

[6]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[7]  Stefaan Poedts,et al.  Continuous magnetohydrodynamic spectra of two-dimensional coronal magnetostatic flux tubes , 1997 .

[8]  W. Kerner Large-scale complex eigenvalue problems , 1989 .

[9]  Margreet Nool,et al.  Calculation of resistive magnetohydrodynamic spectra in tokamaks , 1999 .

[10]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[11]  van Der Holst B,et al.  New Alfven continuum gaps and global modes induced by toroidal flow , 2000, Physical review letters.

[12]  W. Kerner,et al.  Damping of global alfven waves in tokamaks due to resonant absorption , 1992 .

[13]  J. P. Goedbloed,et al.  CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .

[14]  Auke van der Ploeg,et al.  A Parallel Jacobi-Davidson-type Method for Solving Large Generalized Eigenvalue Problems in Magnetohydrodynamics , 2000, SIAM J. Sci. Comput..

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  Poedts,et al.  Magnetohydrodynamic continua and stratification induced Alfvén eigenmodes in coronal magnetic loops. , 1996, Physical review letters.

[17]  A. J. C. Beliën,et al.  On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra , 2000 .