Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.

[1]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[2]  J. Drelich,et al.  Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling , 2017, Metallurgical and Materials Transactions A.

[3]  Patrick K. Bowen,et al.  Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn‐Alloys , 2016, Advanced healthcare materials.

[4]  Yufeng Zheng,et al.  In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants. , 2016, ACS applied materials & interfaces.

[5]  J. Xiang,et al.  In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg–1.0Ca alloys , 2016 .

[6]  Jun Ma,et al.  Biphasic responses of human vascular smooth muscle cells to magnesium ion. , 2016, Journal of biomedical materials research. Part A.

[7]  Nick Birbilis,et al.  A high-specific-strength and corrosion-resistant magnesium alloy. , 2015, Nature materials.

[8]  S. H. Chen,et al.  Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr , 2015, Scientific Reports.

[9]  K. Gross,et al.  Importance of FTIR Spectra Deconvolution for the Analysis of Amorphous Calcium Phosphates , 2015 .

[10]  A. Boccaccini,et al.  Iron and iron-based alloys for temporary cardiovascular applications , 2015, Journal of Materials Science: Materials in Medicine.

[11]  R. Mahmudi,et al.  Work hardening behavior of the extruded and equal-channel angularly pressed Mg–Li–Zn alloys under tensile and shear deformation modes , 2014 .

[12]  Hanwu Dong,et al.  Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio , 2014 .

[13]  J. Drelich,et al.  Magnesium in the murine artery: probing the products of corrosion. , 2014, Acta biomaterialia.

[14]  Yufeng Zheng,et al.  Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features , 2014 .

[15]  Daokui Xu,et al.  Mechanical properties of the icosahedral phase reinforced duplex Mg–Li alloy both at room and elevated temperatures , 2014 .

[16]  M. Maitz,et al.  A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. , 2013, Acta biomaterialia.

[17]  M. Leeflang,et al.  Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. , 2013, Acta biomaterialia.

[18]  Yufeng Zheng,et al.  Novel Magnesium Alloys Developed for Biomedical Application: A Review , 2013 .

[19]  J. Drelich,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[20]  Siyu Chen,et al.  Lithium Chloride Inhibits Vascular Smooth Muscle Cell Proliferation and Migration and Alleviates Injury-Induced Neointimal Hyperplasia via Induction of PGC-1α , 2013, PloS one.

[21]  Yong Wang,et al.  Study on the biodegradability and biocompatibility of WE magnesium alloys , 2012 .

[22]  N Birbilis,et al.  Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. , 2012, Acta biomaterialia.

[23]  Tao Yu,et al.  Effects of Sc Addition and Annealing Treatment on the Microstructure and Mechanical Properties of the As-rolled Mg-3Li alloy , 2011 .

[24]  K. Bala,et al.  Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: implication on use of higher passage cells. , 2011, Tissue & cell.

[25]  M. Ghasemi,et al.  The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. , 2011, Trends in pharmacological sciences.

[26]  Limin Wang,et al.  Effect of Y on microstructure and mechanical properties of duplex Mg–7Li alloys , 2010 .

[27]  Sam Kean,et al.  The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements , 2010 .

[28]  R. Willumeit,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[29]  Janine Fischer,et al.  Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. , 2010, Acta biomaterialia.

[30]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[31]  P. Shek,et al.  Normal range values for thromboelastography in healthy adult volunteers. , 2009, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[32]  R. Wu,et al.  Effects of the addition of Y in Mg–8Li–(1,3)Al alloy , 2009 .

[33]  M. Barnett,et al.  Role of grain boundary sliding in the anisotropy of magnesium alloys , 2009 .

[34]  B. Boonchom Kinetic and thermodynamic studies of MgHPO4 · 3H2O by non-isothermal decomposition data , 2009 .

[35]  Yingwei Song,et al.  Corrosion characterization of Mg–8Li alloy in NaCl solution , 2009 .

[36]  R. Wu,et al.  Microstructure and mechanical properties of Mg–8Li–(0–3)Ce alloys , 2009, Journal of Materials Science.

[37]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[38]  K. Arai,et al.  Lithium Upregulates Vascular Endothelial Growth Factor in Brain Endothelial Cells and Astrocytes , 2009, Stroke.

[39]  P. Matarrese,et al.  Mitochondria regulate platelet metamorphosis induced by opsonized zymosan A – activation and long‐term commitment to cell death , 2009, The FEBS journal.

[40]  Horng-Yu Wu,et al.  Mechanical and anisotropic behaviors of Mg-Li-Zn alloy thin sheets , 2008 .

[41]  I. Reiche,et al.  Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1ν3 PO4 domain , 2008, Analytical and bioanalytical chemistry.

[42]  Guiling Wang,et al.  Electrochemical behavior of Mg–Li, Mg–Li–Al and Mg–Li–Al–Ce in sodium chloride solution , 2008 .

[43]  Paul J. Harrison Tests of Platelet Function , 2007 .

[44]  K Michael Hambidge,et al.  Zinc deficiency: a special challenge. , 2007, The Journal of nutrition.

[45]  Shyong Lee,et al.  Mechanical properties and microstructures of various Mg-Li alloys , 2006 .

[46]  Shyong Lee,et al.  Effect of Al and Mn Content on the Mechanical Properties of Various ECAE Processed Mg-Li-Zn Alloys , 2006 .

[47]  M. Peuster,et al.  Control of smooth muscle cell proliferation by ferrous iron. , 2006, Biomaterials.

[48]  Robert K Andrews,et al.  Primary Platelet Adhesion Receptors , 2005, IUBMB life.

[49]  Shiwen Wu,et al.  Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP , 2004 .

[50]  K. Garg,et al.  Core level photoemission study of polycrystalline MgB2 , 2004 .

[51]  Xiaolong Zhu,et al.  Effects of topography and composition of titanium surface oxides on osteoblast responses. , 2004, Biomaterials.

[52]  B. Mutel,et al.  Use of an Auger parameter for characterizing the Mg chemical state in different materials , 2004 .

[53]  K. Jamison,et al.  Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. , 2004, The American journal of psychiatry.

[54]  C. V. van Blitterswijk,et al.  Calcium phosphate interactions with titanium oxide and alumina substrates: an XPS study , 2003, Journal of materials science. Materials in medicine.

[55]  H. Tsubakino,et al.  Precipitation in Mg-(4-13)%Li-(4-5)%Zn Ternary Alloys , 2003 .

[56]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[57]  Satoru Tanaka,et al.  XPS and UPS studies on electronic structure of Li2O , 2000 .

[58]  J L West,et al.  Nitric oxide-generating polymers reduce platelet adhesion and smooth muscle cell proliferation. , 2000, Biomaterials.

[59]  N. Hatta,et al.  The formability of a thin sheet of Mg–8.5Li–1Zn alloy , 2000 .

[60]  N. Hatta,et al.  Effect of strain rate on deformation behaviour of a Mg–8.5Li–1Zn alloy sheet at room temperature , 1999 .

[61]  J. G. Sevillano,et al.  Texture and large–strain deformation microstructure , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  M. Mabuchi,et al.  Review Processing and mechanical properties of fine-grained magnesium alloys , 1999 .

[63]  B. Ashby,et al.  Molecular Basis for ADP-induced Platelet Activation , 1998, The Journal of Biological Chemistry.

[64]  D. Dubé,et al.  Mechanical properties and microstructure of new magnesium-lithium base alloys , 1996 .

[65]  A. Boskey,et al.  FTIR microspectroscopic analysis of human osteonal bone , 1996, Calcified Tissue International.

[66]  J. Loscalzo State-of-the-Art Review : Nitric Oxide and Restenosis , 1996 .

[67]  I. Schousboe Contact activation in human plasma is triggered by zinc ion modulation of factor XII (Hageman factor). , 1993, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[68]  S. Moncada,et al.  Vascular endothelial cells synthesize nitric oxide from L-arginine , 1988, Nature.

[69]  J. Mitchell,et al.  The Effect of Agents which Modify Platelet Behaviour and of Magnesium Ions on Thrombus Formation In Vivo , 1979, Thrombosis and Haemostasis.

[70]  J. Lieb,et al.  Lithium Treatment of Chronic Cluster Headaches , 1978, British Journal of Psychiatry.

[71]  W. Jones,et al.  THE STABILITY OF MECHANICAL PROPERTIES OF BETA-PHASE MAGNESIUM-LITHIUM ALLOYS , 1957 .

[72]  Yong Liu,et al.  AGE/RAGE promotes thecalcification of human aortic smooth muscle cells via the Wnt/β-catenin axis. , 2016, American journal of translational research.

[73]  Donghui Zhu,et al.  Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. , 2015, Metallomics : integrated biometal science.

[74]  Yufeng Zheng,et al.  Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. , 2015, Materials science & engineering. C, Materials for biological applications.

[75]  Da Yeon Kim,et al.  Biodegradable stent , 2013 .

[76]  A. Atrens,et al.  An innovative specimen configuration for the study of Mg corrosion , 2011 .

[77]  P. Lu,et al.  Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[78]  Takehisa Matsuda,et al.  The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. , 2007, Biomaterials.

[79]  Liu Zhen-gang Microstructure and Mechanical Properties of Mg-Li-Mn Alloy , 2006 .

[80]  Andrea G. Bishop,et al.  Surface analysis of LiMn2O4 electrodes in carbonate based electrolytes , 2002 .

[81]  F. Gnanam,et al.  SYNTHESIS AND CHARACTERISATION OF BIPHASIC CALCIUM PHOSPHATE , 2002 .

[82]  H. Takuda,et al.  Tensile properties of a few Mg-Li-Zn alloy thin sheets , 2002 .

[83]  J. Mendez,et al.  On the transformation characteristics of LA141A (Mg-LiAl) alloy , 1996 .

[84]  M. Walters,et al.  Second derivative infrared spectra of hydroxyapatite , 1990 .

[85]  P. Van Houtte,et al.  Large strain work hardening and textures , 1980 .