Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics

Relaxor ferroelectrics are a prototypical example of ferroic systems in which interplay between atomic disorder and order parameters gives rise to emergence of unusual properties, including non-exponential relaxations, memory effects, polarization rotations, and broad spectrum of bias- and temperatureinduced phase transitions. Despite more than 40 years of extensive research following the original discovery of ferroelectric relaxors by the Smolensky group, the most basic aspect of these materials – the existence and nature of order parameter – has not been understood thoroughly. Using extensive imaging and spectroscopic studies by variable-temperature and time resolved piezoresponse force microscopy, we fithat the observed mesoscopic behavior is consistent with the presence of two effective order parameters describing dynamic and static parts of polarization, respectively. The static component gives rise to rich spatially ordered systems on the ∼ 100 nm length scales, and are only weakly responsive to electric fi eld. The surface of relaxors undergoes a mesoscopic symmetry breaking leading to the freezing of polarization fl uctuations and shift of corresponding transition temperature.

[1]  Sergei V. Kalinin,et al.  Scanning probe microscopy of functional materials : nanoscale imaging and spectroscopy , 2010 .

[2]  V. Wadhawan Introduction to Ferroic Materials , 2000 .

[3]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[4]  M. Glinchuk,et al.  Dipole glass and ferroelectricity in random-site electric dipole systems , 1990 .

[5]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[6]  Guangyong Xu,et al.  Persistence and memory of polar nanoregions in a ferroelectric relaxor under an electric field , 2005 .

[7]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[8]  Xiaomei Lu,et al.  Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope , 2006 .

[9]  Bjelis,et al.  Incommensurate periodic configurations in systems with a real order parameter. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  The relaxor enigma — charge disorder and random fields in ferroelectrics , 2006 .

[11]  A. Jonscher Dielectric relaxation in solids , 1983 .

[12]  R. Landauer Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal , 1957 .

[13]  D. Viehland,et al.  Interplay between static and dynamic polar correlations in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2010, 1002.0716.

[14]  D. Viehland,et al.  Piezoelectric instability in 〈011〉-oriented Pb(B1/3IB2/3II)O3–PbTiO3 crystals , 2001 .

[15]  Sergei V. Kalinin,et al.  Nanoelectromechanics of polarization switching in piezoresponse force microscopy , 2004, cond-mat/0406383.

[16]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[17]  G. Burns,et al.  Crystalline ferroelectrics with glassy polarization behavior , 1983 .

[18]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[19]  I. Takeuchi,et al.  Universal Behavior and Electric‐Field‐Induced Structural Transition in Rare‐Earth‐Substituted BiFeO3 , 2010 .

[20]  Bjelis,et al.  Domain patterns in incommensurate systems with the uniaxial real order parameter. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Yossi Rosenwaks,et al.  Dynamics of ferroelectric domain growth in the field of atomic force microscope , 2006 .

[22]  V. Gopalan,et al.  Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase , 2009, 0912.4423.

[23]  Sergei V. Kalinin,et al.  Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach , 2010, Materials.

[24]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[25]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[26]  Sergei V. Kalinin,et al.  Local polarization dynamics in ferroelectric materials , 2010 .

[27]  Hajime Tanaka Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit , 1999 .

[28]  A. Tagantsev,et al.  Polarization response of crystals with structural and ferroelectric instabilities. , 1993, Physical review. B, Condensed matter.

[29]  Charles Kittel,et al.  Theory of the structure of ferromagnetic domains in films and small particles , 1946 .

[30]  G. Shirane,et al.  Dual structures in (1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3 ferroelectric relaxors , 2004 .

[31]  Sergei V. Kalinin,et al.  Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors , 2022 .

[32]  C. Angell,et al.  Perspective on the glass transition , 1988 .

[33]  A. Kholkin,et al.  Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy , 2007 .

[34]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[35]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[36]  E. Husson,et al.  Superstructure in PbMg13Nb23O3 ceramics revealed by high resolution electron microscopy , 1988 .

[37]  M. Molotskii Generation of ferroelectric domains in atomic force microscope , 2003 .

[38]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[39]  D. J. Barber,et al.  In situ TEM experiments on perovskite-structured ferroelectric relaxor materials , 1987 .

[40]  C. Randall,et al.  In situ TEM Investigations of the High‐Temperature Relaxor Ferroelectric BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 Ternary Solid Solution , 2007 .

[41]  Finite size and intrinsic field effect on the polar-active properties of ferroelectric-semiconductor heterostructures , 2009, 1001.0121.

[42]  Sergei V. Kalinin,et al.  Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy , 2005 .

[43]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[44]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[45]  V. Shvartsman,et al.  Ferroelectric-to-relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3 , 2004 .

[46]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[47]  W. Kleemann RANDOM-FIELD INDUCED ANTIFERROMAGNETIC, FERROELECTRIC AND STRUCTURAL DOMAIN STATES , 1993 .

[48]  Sergei V. Kalinin,et al.  Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase , 2009 .

[49]  Sergei V. Kalinin,et al.  Piezoresponse force spectroscopy of ferroelectric-semiconductor materials , 2006, cond-mat/0610764.

[50]  G. Shirane,et al.  Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1 -x )Pb (Mg1/3Nb2/3 )O3-xPbTiO3 (0≤x≤ 0.40) , 2006 .

[51]  Lattice models and Landau theory for type-II incommensurate crystals , 2000, cond-mat/0004270.

[52]  T. Egami Local Structure of Ferroelectric Materials , 2007 .

[53]  A. Rappe,et al.  Molecular dynamics study of dielectric response in a relaxor ferroelectric. , 2009, Physical Review Letters.

[54]  M. S. Panchelyuga,et al.  Theory of the dielectric nonlinearity in ferroelectric relaxors in the vicinity of the Vogel-Fulcher temperature under dc bias fields , 2007 .

[55]  S. Trolier-McKinstry,et al.  Polarization fatigue in Pb(Zn1/3Nb2/3)O3–PbTiO3 ferroelectric single crystals , 2001 .

[56]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[57]  Jean Toulouse,et al.  Temperature evolution of the relaxor dynamics in Pb ( Zn 1 ∕ 3 Nb 2 ∕ 3 ) O 3 : A critical Raman analysis , 2005 .

[58]  Jianbin Xu,et al.  Study of domain stability on (Pb0.76Ca0.24)TiO3 thin films using piezoresponse microscopy , 2002 .

[59]  Zhengkui Xu,et al.  Hot‐stage transmission electron microscopy studies of phase transformations in tin‐modified lead zirconate titanate , 1993 .

[60]  R. Böhmer,et al.  Long-lived dynamic heterogeneity in a relaxor ferroelectric , 1998 .

[61]  V. Shvartsman,et al.  Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals , 2007 .

[62]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[63]  Abhishek Bhattacharyya,et al.  Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite , 2009 .

[64]  Kenji Kitamura,et al.  Thermal stability of LiTaO3 domains engineered by scanning force microscopy , 2006 .

[65]  Bell,et al.  Evidence for domain-type dynamics in the ergodic phase of the PbMg1/3Nb2/3O3 relaxor ferroelectric. , 1996, Physical review. B, Condensed matter.

[66]  U. Böttger,et al.  Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy , 2000 .