Effect of surface inhomogeneities on the electrical characteristics of SiC Schottky contacts

This paper reports analysis of the role of defects on the electrical characteristics of high-voltage 6H-SiC Schottky rectifiers. The measured reverse leakage current of high-voltage Ti and Pt rectifiers was found to be much higher than that predicted by thermionic emission theory and using a barrier height extracted from the C-V measurements. In this paper, a model based upon the presence of defects at the 6H-SiC/metal interface is used to explains this behavior. It is proposed that these defects result in lowering of the barrier height in the localized regions and thus, significantly affect the reverse I-V characteristics of the Schottky contacts. The presence of electrically active defects in the Schottky barrier area has been verified by EBIC studies.

[1]  K. Koga,et al.  Growth and Characterization of 6H-SiC Bulk Crystals by the Sublimation Method , 1992 .

[2]  M. Shur,et al.  Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide , 1991, Proc. IEEE.

[3]  S. H. Hagen Surface‐Barrier Diodes on Silicon Carbide , 1968 .

[4]  M. Bhatnagar,et al.  Comparison of Ti and Pt silicon carbide Schottky rectifiers , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[5]  Philip G. Neudeck,et al.  2000 V 6H-SIC P-N JUNCTION DIODES GROWN BY CHEMICAL VAPOR DEPOSITION , 1994 .

[6]  J. Sullivan,et al.  Electron transport of inhomogeneous Schottky barriers: A numerical study , 1991 .

[7]  R. Davis,et al.  Heteroepitaxial Growih and Characterization of Titanium Films on Alpha (6H) Silicon Carbide , 1991 .

[8]  J. Waldrop Schottky barrier height of metal contacts to p‐type alpha 6H‐SiC , 1994 .

[9]  B. J. Baliga,et al.  Silicon-carbide high-voltage (400 V) Schottky barrier diodes , 1992, IEEE Electron Device Letters.

[10]  P. Ivanov,et al.  Recent developments in SiC single-crystal electronics , 1992 .

[11]  Michael Dudley,et al.  X-Ray Topographic Studies of Defects in PVT 6H-SiC Substrates and Epitaxial 6H-SiC Thin Films , 1994 .

[12]  C. Zetterling,et al.  Temperature stability of cobalt Schottky contacts on n- and p-type 6H silicon carbide , 1993 .

[13]  R. T. Tung,et al.  ELECTRON TRANSPORT OF INHOMOGENEOUS SCHOTTKY BARRIERS , 1991 .

[14]  A. Christou,et al.  Pt and PtSix Schottky contacts on n‐type β‐SiC , 1989 .

[15]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[16]  R. B. Campbell,et al.  AuSiC Schottky barrier diodes , 1974 .

[17]  J. Waldrop,et al.  Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H‐SiC: Crystal face dependence , 1993 .

[18]  P. Neudeck,et al.  Performance limiting micropipe defects in silicon carbide wafers , 1994, IEEE Electron Device Letters.

[19]  R. Stein Formation of macrodefects in SiC , 1993 .

[20]  C. Carter,et al.  Characterization of Defect Structures in SiC Single Crystals Using Synchrotron X-Ray Topography , 1993 .

[21]  Robert F. Davis,et al.  Metal Schottky barrier contacts to alpha 6H:SiC , 1992 .

[22]  D. Ioannou,et al.  The effect of heat treatment on Au Schottky contacts on β-SiC , 1987, IEEE Transactions on Electron Devices.

[23]  E. Sakuma,et al.  Schottky barrier diodes on 3C‐SiC , 1985 .

[24]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .