Inherited blood cancer predisposition through altered transcription elongation

[1]  Anna L. Brown,et al.  Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26 , 2023, Blood.

[2]  A. Shimamura,et al.  Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: Biological insights and clinical advances. , 2022, Blood.

[3]  T. Bowman,et al.  DDX41-associated susceptibility to myeloid neoplasms , 2022, Blood.

[4]  K. Calvo,et al.  The Spectrum of GATA2 Deficiency Syndrome. , 2022, Blood.

[5]  M. Loh,et al.  International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: Integrating Morphological, Clinical, and Genomic Data. , 2022, Blood.

[6]  L. Godley,et al.  Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies , 2022, Current Hematologic Malignancy Reports.

[7]  C. Clish,et al.  Human hematopoietic stem cell vulnerability to ferroptosis , 2022, Cell.

[8]  P. A. Futreal,et al.  A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia , 2022, Nature Medicine.

[9]  A. Regev,et al.  A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia , 2021, bioRxiv.

[10]  J. Marchini,et al.  Exome sequencing and analysis of 454,787 UK Biobank participants , 2021, Nature.

[11]  Sri V. V. Deevi,et al.  Rare variant contribution to human disease in 281,104 UK Biobank exomes , 2021, Nature.

[12]  Sri V. V. Deevi,et al.  Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank , 2021, Nature Genetics.

[13]  J. Klco,et al.  Advances in germline predisposition to acute leukaemias and myeloid neoplasms , 2020, Nature Reviews Cancer.

[14]  D. Wolan,et al.  Chemical Inhibition of ENL/AF9 YEATS Domains in Acute Leukemia , 2020, bioRxiv.

[15]  Xiaoming Liu,et al.  dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs , 2020, Genome Medicine.

[16]  L. Godley,et al.  Identifying potential germline variants from sequencing hematopoietic malignancies. , 2020, Blood.

[17]  Alexander E. Lopez,et al.  Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.

[18]  Ivana V. Yang,et al.  Inherited Causes of Clonal Hematopoiesis in 97,691 TOPMed Whole Genomes , 2020, Nature.

[19]  Tao Wang,et al.  Dual ARID1A/ARID1B loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes , 2020, Nature Cancer.

[20]  A. Abate,et al.  Single cell mutation analysis of clonal evolution in myeloid malignancies , 2020, Nature.

[21]  J. Homsi,et al.  Merkel Cell Polyomavirus Small T Antigen Activates Noncanonical NF-κB Signaling to Promote Tumorigenesis , 2020, Molecular Cancer Research.

[22]  M. Daly,et al.  Inherited myeloproliferative neoplasm risk impacts hematopoietic stem cells , 2020, Nature.

[23]  Gonçalo Abecasis,et al.  Computationally efficient whole-genome regression for quantitative and binary traits , 2020, Nature Genetics.

[24]  P. Cramer,et al.  Structure of complete Pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation , 2020, Nature Structural & Molecular Biology.

[25]  Poorni R. Adikaram,et al.  Genotype of CDC73 germline mutation determines risk of parathyroid cancer. , 2020, Endocrine-related cancer.

[26]  Hiromi Hirata,et al.  InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution , 2020, NAR genomics and bioinformatics.

[27]  E. Passegué,et al.  Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis , 2020, Nature Reviews Cancer.

[28]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[29]  K. Adelman,et al.  Co-transcriptional splicing regulates 3’ end cleavage during mammalian erythropoiesis , 2020, bioRxiv.

[30]  R. Tjian,et al.  Impaired cell fate through gain-of-function mutations in a chromatin reader , 2019, Nature.

[31]  J. Denny,et al.  Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation , 2019, JMIR medical informatics.

[32]  F. Lay,et al.  MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment , 2019, Nature.

[33]  L. Arenillas,et al.  Non-del(5q) myelodysplastic syndromes-associated loci detected by SNP-array genome-wide association meta-analysis. , 2019, Blood advances.

[34]  Lara E Sucheston-Campbell,et al.  Genome-Wide Association Analyses Identify Variants in IRF4 Associated With Acute Myeloid Leukemia and Myelodysplastic Syndrome Susceptibility , 2019, bioRxiv.

[35]  G. Sauvageau,et al.  Integrin-α3 Is a Functional Marker of Ex Vivo Expanded Human Long-Term Hematopoietic Stem Cells. , 2019, Cell reports.

[36]  I. Maillard,et al.  The PAF1c Subunit CDC73 Is Required for Mouse Hematopoietic Stem Cell Maintenance but Displays Leukemia-Specific Gene Regulation , 2019, Stem cell reports.

[37]  Wei Zhou,et al.  Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts , 2019, Nature Genetics.

[38]  G. Pinkus,et al.  Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity , 2019, Cell.

[39]  Claire E. Rye,et al.  COSMIC: the Catalogue Of Somatic Mutations In Cancer , 2018, Nucleic Acids Res..

[40]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[41]  C. Bloomfield,et al.  Genome-wide association study identifies an acute myeloid leukemia susceptibility locus near BICRA , 2018, Leukemia.

[42]  R. Houlston,et al.  Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. , 2018, Blood.

[43]  Yu Shyr,et al.  Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation , 2018, BMC Genomics.

[44]  P. Cramer,et al.  Structure of activated transcription complex Pol II–DSIF–PAF–SPT6 , 2018, Nature.

[45]  Nicola Sartori,et al.  Mean and median bias reduction in generalized linear models , 2018, Stat. Comput..

[46]  R. Slany,et al.  The interaction of ENL with PAF1 mitigates polycomb silencing and facilitates murine leukemogenesis. , 2018, Blood.

[47]  R. Levine,et al.  Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. , 2018, Cell stem cell.

[48]  Chunlei Liu,et al.  ClinVar: improving access to variant interpretations and supporting evidence , 2017, Nucleic Acids Res..

[49]  K. Arndt,et al.  Emerging Insights into the Roles of the Paf1 Complex in Gene Regulation. , 2017, Trends in biochemical sciences.

[50]  Michael Q. Zhang,et al.  PAF1 regulation of promoter-proximal pause release via enhancer activation , 2017, Science.

[51]  O. Abdel-Wahab,et al.  Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression , 2017, Cell.

[52]  Mathias Munschauer,et al.  Developmentally‐faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice , 2017, American journal of hematology.

[53]  Patrick McGillivray,et al.  Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes , 2017, Nature Communications.

[54]  R. Deberardinis,et al.  Ascorbate regulates haematopoietic stem cell function and leukaemogenesis , 2017, Nature.

[55]  S. Armstrong,et al.  ENL links histone acetylation to oncogenic gene expression in AML , 2017, Nature.

[56]  Neville E. Sanjana,et al.  Transcription control by the ENL YEATS domain in acute leukemia , 2016, Nature.

[57]  B. Ebert,et al.  The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia , 2016, Nature Reviews Cancer.

[58]  Nicholas Eriksson,et al.  Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. , 2016, Blood.

[59]  J. Zack,et al.  Medial HOXA genes demarcate haematopoietic stem cell fate during human development , 2016, Nature Cell Biology.

[60]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[61]  G. Sauvageau,et al.  Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells. , 2016, Blood.

[62]  R. Roeder,et al.  RNA polymerase II–associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II , 2015, Science.

[63]  T. Chou,et al.  Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques , 2015, BMC Biology.

[64]  T. Chou,et al.  Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques , 2015, bioRxiv.

[65]  Ashley R. Woodfin,et al.  PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II , 2015, Cell.

[66]  Paola Guglielmelli,et al.  Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms , 2015, Nature Communications.

[67]  Brian E. McIntosh,et al.  Nonirradiated NOD,B6.SCID Il2rγ−/−KitW41/W41 (NBSGW) Mice Support Multilineage Engraftment of Human Hematopoietic Cells , 2015, Stem cell reports.

[68]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[69]  S. Seal,et al.  Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour , 2014, Nature Communications.

[70]  A. Shilatifard,et al.  The super elongation complex (SEC) family in transcriptional control , 2012, Nature Reviews Molecular Cell Biology.

[71]  Caleb K. Chan,et al.  Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin , 2011, Proceedings of the National Academy of Sciences.

[72]  P. Guglielmelli,et al.  JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment , 2011, Therapeutic advances in hematology.

[73]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[74]  R. Roeder,et al.  The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS , 2010, Cell.

[75]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[76]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[77]  J. Carpten,et al.  HRPT2, encoding parafibromin, is mutated in hyperparathyroidism–jaw tumor syndrome , 2002, Nature Genetics.

[78]  A. M. Morrison,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. , 2002, Development.

[79]  K. Sturm,et al.  Estimation of the number of hematopoietic precursor cells during fetal mouse development by covariance analysis. , 1996, Blood.

[80]  S. Brilleman,et al.  Joint longitudinal and time-to-event models via Stan , 2017 .

[81]  R. Herbst,et al.  Quantitative developmental anatomy of definitive haematopoietic stem cells / long-term repopulating units ( HSC / RUs ) : role of the aorta-gonad-mesonephros ( AGM ) region and the yolk sac in colonisation of the mouse embryonic liver , 2002 .

[82]  Sue J. Welham,et al.  Genstat 5 release 3 reference manual , 1994 .