Observation of forbidden phonons and dark excitons by resonance Raman scattering in few-layer WS$_2$

The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical properties of 2D materials and thus help develop emerging 2D crystal based optoelectronic devices. Here, we presented the excitonic resonant Raman scattering (RRS) spectra of few-layer WS$_2$ excited by 11 lasers lines covered all of A, B and C exciton transition energies at different sample temperatures from 4 to 300 K. As a result, we are not only able to probe the forbidden phonon modes unobserved in ordinary Raman scattering, but also can determine the bright and dark state fine structures of 1s A exciton. In particular, we also observed the quantum interference between low-energy discrete phonon and exciton continuum under resonant excitation. Our works pave a way to understand the exciton-phonon coupling and many-body effects in 2D materials.

[1]  T. C. Damen,et al.  Multiple-Phonon Resonant Raman Scattering in CdS , 1969 .

[2]  T. C. Damen,et al.  Breakdown of Selection Rules in Resonance Raman Scattering , 1971 .

[3]  Y. Shen,et al.  RESONANCE RAMAN SCATTERING AT THE FORBIDDEN YELLOW EXCITON IN CU2O , 1973 .

[4]  S. Porto,et al.  Symmetry-Forbidden Resonant Raman Scatt ering in Cu 2 O , 1973 .

[5]  H. Cummins,et al.  Resonant Quadrupole-Dipole Raman Scattering at the 1S Yellow Exciton in Cu 2 O , 1973 .

[6]  P. Y. Yu,et al.  Multiple Resonance Effects on Raman Scattering at the Yellow-Exciton Series of Cu 2 O , 1974 .

[7]  M. Balkanski,et al.  Theory of interference distortion of Raman scattering line shapes in semiconductors , 1975 .

[8]  E. Koteles,et al.  Resonant scattering of exciton polaritons by LO and acoustic phonons , 1979 .

[9]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[10]  Jose Menendez,et al.  Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α − S n : Anharmonic effects , 1984 .

[11]  T. Mcnelley,et al.  Temperature dependence of , 1993, Metallurgical and Materials Transactions A.

[12]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[13]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[14]  C. Clark Effects of configuration interaction on intensities and phase shifts, ed. by D.R. Lide , 2001 .

[15]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[16]  Inelastic light scattering from correlated electrons , 2006, cond-mat/0607554.

[17]  K. Novoselov,et al.  Gate tunable infrared phonon anomalies in bilayer graphene. , 2009, Physical review letters.

[18]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[19]  A tunable phonon-exciton Fano system in bilayer graphene. , 2009, Nature nanotechnology.

[20]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[21]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[22]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[23]  Jun Zhang,et al.  Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. , 2011, Nano letters.

[24]  Y. Wang,et al.  The shear mode of multilayer graphene. , 2011, Nature materials.

[25]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[26]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[27]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[28]  Pooi See Lee,et al.  Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. , 2013, Physical review letters.

[29]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[30]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[31]  A. Ferrari,et al.  Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 , 2012, 1212.6796.

[32]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[33]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[34]  T. Mallouk,et al.  Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. , 2014, ACS nano.

[35]  Alexey Chernikov,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .

[36]  Andrea C. Ferrari,et al.  Resonant Raman spectroscopy of twisted multilayer graphene , 2014, Nature Communications.

[37]  Z. Gong,et al.  Anomalously robust valley polarization and valley coherence in bilayer WS2 , 2014, Proceedings of the National Academy of Sciences.

[38]  G. Deligeorgis,et al.  Second-order resonant Raman scattering in single-layer tungsten disulfide WS 2 , 2014, 1406.3511.

[39]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[40]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[41]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[42]  C. Robert,et al.  Double resonant Raman scattering and valley coherence generation in monolayer WSe_{2}. , 2015, Physical review letters.

[43]  T. Heinz,et al.  Experimental Evidence for Dark Excitons in Monolayer WSe_{2}. , 2015, Physical review letters.

[44]  L. Wirtz,et al.  Unified Description of the Optical Phonon Modes in N-Layer MoTe2. , 2015, Nano letters.

[45]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[46]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[47]  H. Zeng,et al.  An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. , 2015, Chemical Society reviews.

[48]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[49]  M. Pimenta,et al.  Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. , 2015, Physical review letters.

[50]  J. Maultzsch,et al.  Splitting of monolayer out-of-plane A 1 ' Raman mode in few-layer WS 2 , 2015, 1504.00049.

[51]  Xiaoqin Li,et al.  Long-Lived Valley Polarization of Intravalley Trions in Monolayer WSe_{2}. , 2016, Physical review letters.

[52]  L. Dai,et al.  Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe 2 , 2016, 1602.05692.

[53]  Aaron M. Jones,et al.  Excitonic luminescence upconversion in a two-dimensional semiconductor , 2015, Nature Physics.

[54]  M. Terrones,et al.  Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy. , 2016, Nano letters.

[55]  Jun Zhang,et al.  Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene , 2016, Nano Research.

[56]  C. Robert,et al.  Splitting between bright and dark excitons in transition metal dichalcogenide monolayers , 2016, 1601.07351.

[57]  Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2. , 2016, ACS nano.

[58]  Tao Chen,et al.  Determining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates , 2016, Nanotechnology.

[59]  Wei Shi,et al.  Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2 , 2016 .

[60]  A. Bruchhausen,et al.  Resonance effects in the Raman scattering of monolayer and few-layer MoSe 2 , 2016, 1603.05172.

[61]  P. Christianen,et al.  Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide , 2016, Nature Communications.

[62]  Leong Chuan Kwek,et al.  Resolved-sideband Raman cooling of an optical phonon in semiconductor materials , 2016, Nature Photonics.

[63]  C. Robert,et al.  Enabling valley selective exciton scattering in monolayer WSe2 through upconversion , 2017, Nature Communications.

[64]  M. Terrones,et al.  Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy , 2017, Nature Communications.

[65]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[66]  A. Knorr,et al.  Proposal for dark exciton based chemical sensors , 2017, Nature Communications.

[67]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.

[68]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.