Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system.

We experimentally demonstrate the feasibility of a multi-degree colorless, directionless, and contentionless (C/D/C-less) ROADM node composed of high port count wavelength-selective switches and transponder aggregators using silica-based planar lightwave circuit technology. The experimental results show that the introduction of a C/D/C-less function to a multi-degree ROADM node induces no significant penalty in a 127-Gbit/s PDM-QPSK signal transmission.

[1]  T. Kawai,et al.  Experimental demonstration of colourless, directionless, contentionless ROADM using 1×43 WSS and PLC-based transponder aggregator for 127-Gbit/s DP-QPSK system , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[2]  Andrew Lord,et al.  Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches , 2010, 36th European Conference and Exhibition on Optical Communication.

[3]  Yuzo Ishii,et al.  MEMS-based 1×43 wavelength-selective switch with flat passband , 2009, 2009 35th European Conference on Optical Communication.

[4]  Tiejun J. Xia,et al.  Flexible architectures for optical transport nodes and networks , 2010, IEEE Communications Magazine.

[5]  S L Woodward,et al.  Detection of a Single 40 Gb/s Polarization-Multiplexed QPSK Channel With a Real-Time Intradyne Receiver in the Presence of Multiple Coincident WDM Channels , 2010, Journal of Lightwave Technology.

[6]  Toshio Watanabe,et al.  Compact PLC-based transponder aggregator for colorless and directionless ROADM , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[7]  Michel Poulin,et al.  Performance of balanced detection in a coherent receiver. , 2009, Optics express.

[8]  Guo-Qiang Lo,et al.  Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.