Improvement of Ni/Al2O3 Catalysts for Low-Temperature CO2 Methanation by Vanadium and Calcium Oxide Addition

CO2 methanation is a very promising technology for the production of alternative fuels with the simultaneous use of greenhouse gases. Therefore, intensive research is carried out on the optimizatio...

[1]  G. Busca,et al.  Ni/SiO2-Al2O3 catalysts for CO2 methanation: Effect of La2O3 addition , 2021 .

[2]  D. Lozano‐Castelló,et al.  Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts , 2020 .

[3]  S. Kawi,et al.  A review of recent catalyst advances in CO2 methanation processes , 2020 .

[4]  L. Rossi,et al.  Hydrogenation of carbon dioxide: From waste to value , 2020 .

[5]  P. Costamagna,et al.  A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts , 2020, Energies.

[6]  J. Tchorz,et al.  Pilot plant initial results for the methanation process using CO2 from amine scrubbing at the Łaziska power plant in Poland , 2020 .

[7]  Jing-Pei Cao,et al.  Methanation of syngas from biomass gasification: An overview , 2020, International Journal of Hydrogen Energy.

[8]  J. Hansen,et al.  Catalytic methanation of CO2 in biogas: experimental results from a reactor at full scale , 2020, Reaction Chemistry & Engineering.

[9]  P. Berben,et al.  Understanding carbon dioxide activation and carbon–carbon coupling over nickel , 2019, Nature Communications.

[10]  M. Flytzani-Stephanopoulos,et al.  A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation , 2019, Applied Catalysis B: Environmental.

[11]  N. Kang,et al.  Nano composite composed of MoOx-La2O3Ni on SiO2 for storing hydrogen into CH4 via CO2 methanation , 2019, International Journal of Hydrogen Energy.

[12]  Haifeng Zhou,et al.  CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance , 2018 .

[13]  J. Brightling Ammonia and the Fertiliser Industry: The Development of Ammonia at Billingham , 2018 .

[14]  Hongbing Ji,et al.  Recent Advances in Heterogeneous Catalytic Hydrogenation of CO2 to Methane , 2017 .

[15]  C. Herrera,et al.  Hydrogen production by steam reforming of DME over Ni-based catalysts modified with vanadium , 2016 .

[16]  G. Busca,et al.  On the detectability limits of nickel species on NiO/γ-Al2O3 catalytic materials , 2016 .

[17]  Jeffrey T. Miller,et al.  Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts , 2016 .

[18]  M. Götz,et al.  Review on methanation – From fundamentals to current projects , 2016 .

[19]  M. Larrubia,et al.  Biofuel steam reforming catalyst for fuel cell application , 2015 .

[20]  Mikael Carlsson Carbon Formation in Steam Reforming and Effect of Potassium Promotion , 2015 .

[21]  L. Magistri,et al.  Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability , 2015 .

[22]  Guangwen Xu,et al.  Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation , 2014 .

[23]  L. Magistri,et al.  A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure , 2014 .

[24]  G. Busca The surface of transitional aluminas: A critical review , 2014 .

[25]  G. Busca,et al.  Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables , 2013 .

[26]  Samuel Shaw,et al.  The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. , 2011, Nanoscale.

[27]  M. Larrubia,et al.  Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane , 2010 .

[28]  A. Kiennemann,et al.  Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane , 2006 .

[29]  R. Frost,et al.  Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore , 2002 .

[30]  M. Larrubia,et al.  An ultraviolet–visible–near infrared study of the electronic structure of oxide-supported vanadia–tungsta and vanadia–molybdena , 2001 .

[31]  J. Geus,et al.  The structure of vanadium oxide species on γ-alumina; an in situ X-ray absorption study during catalytic oxidation , 2000 .

[32]  A. Lemonidou,et al.  Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts – effect of preparation method , 1998 .

[33]  J. Moulijn,et al.  Temperature-programmed reduction of NiOWO3/Al2O3 Hydrodesulphurization catalysts , 1989 .

[34]  J. Smith,et al.  The Ni-V (Nickel-Vanadium) system , 1982 .

[35]  B. Höhlein,et al.  High temperature methanation in the long-distance nuclear energy transport system , 1981 .