An investigation of the effects of flue gas injection on natural draft cooling tower performance

This paper addresses an investigation of flue gas injection on natural draft cooling tower performance through numerical simulation. The control volume finite difference method was used for discretizing the governing equations in axisymmetric form on a boundary-fitted grid. The five independent variables addressed in this study are flue gas flow rate, flue gas temperature, radial injection location, injection orientation, and liquid entrainment in the flue gas. The flue gas temperature was found to have the most significant effect on tower performance (cold water temperature), because it strongly affects the buoyancy within the tower. The total air flow through a tower is driven by buoyancy forces, and the cooling performance is a strong function of the air flow rate.