On bounded functional interpretations

Abstract Bounded functional interpretations are variants of functional interpretations where bounds (rather than precise witnesses) are extracted from proofs. These have been particularly useful in computationally interpreting non-computational principles such as weak Konig’s lemma. This paper presents a family of bounded functional interpretations — in the form of a parametrized interpretation — of both intuitionistic logic and (a fragment of) intuitionistic linear logic. We show how three different instantiations of the parameters give rise to three recently developed bounded interpretations: the bounded functional interpretation, bounded modified realizability and confined modified realizability.

[1]  Thomas Strahm Dialectica. Special Issue: Gödel's dialectica Interpretation , 2008 .

[2]  J. Diller Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .

[3]  Paulo Oliva Computational Interpretations of Classical Linear Logic , 2007, WoLLIC.

[4]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[5]  Fernando Ferreira,et al.  Bounded modified realizability , 2006, J. Symb. Log..

[6]  Paulo Oliva An Analysis of Gödel's dialectica Interpretation via Linear Logic , 2008 .

[7]  Paulo Oliva,et al.  Confined modified realizability , 2010, Math. Log. Q..

[8]  Paulo Oliva,et al.  Functional interpretations of linear and intuitionistic logic , 2010, Inf. Comput..

[9]  Paulo Oliva,et al.  Functional Interpretations of Intuitionistic Linear Logic , 2010, Log. Methods Comput. Sci..

[10]  Paulo Oliva,et al.  Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..

[11]  Paulo Oliva,et al.  Modified Realizability Interpretation of Classical Linear Logic , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[12]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[13]  Paulo Oliva,et al.  Bounded functional interpretation , 2005, Ann. Pure Appl. Log..

[14]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .

[15]  Paulo Oliva,et al.  Bounded functional interpretation and feasible analysis , 2007, Ann. Pure Appl. Log..