Simulation of three-demensional unsteady flow in hydraulic pumps

In this thesis it is shown that the flow in hydraulic pumps of the radial and mixedflow type, operating at conditions not too far from design point, can be considered as an incompressible potential flow, where the influence of viscosity is restricted to thin boundary layers, wakes and mixing areas. A three-dimensional method for unsteady flow based on this model yields good results. In order to predict the efficiency of pumps, additional models to quantify the viscous losses can be employed successfully. Thus reads the overall conclusion which can be drawn from the investigation presented in this thesis.

[1]  Franciscus Cornelis Visser On the flow in centrifugal impellers , 1996 .

[2]  Ronald D. Flack,et al.  Two-Dimensional Flow Analysis of a Laboratory Centrifugal Pump , 1992 .

[3]  E. A. Baskharone,et al.  A New Model for Leakage Prediction in Shrouded-Impeller Turbopumps , 1989 .

[4]  R. E. Mayle,et al.  The Role of Laminar-Turbulent Transition in Gas Turbine Engines , 1991 .

[5]  Carl Pfleiderer,et al.  Die Kreiselpumpen für Flüssigkeiten und Gase , 1955 .

[6]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[7]  H. Glauert The force and moment on an oscillating aerofoil , 1930 .

[8]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[9]  J. F. Combes,et al.  Numerical and Experimental Analysis of the Flow in a Centrifugal Pump at Nominal and Partial Flow Rate , 1992 .

[10]  C. J. Hogendoorn Heat transfer measurements in subsonic transitional boundary layers , 1997 .

[11]  D. Poling,et al.  The Response of Airfoils to Periodic Disturbances —The Unsteady Kutta Condition , 1984 .

[12]  A. D. Young,et al.  An Introduction to Fluid Mechanics , 1968 .

[13]  B. Thwaites,et al.  Approximate Calculation of the Laminar Boundary Layer , 1949 .

[14]  A. Savill Recent Developments in Rapid-Distortion Theory , 1987 .

[15]  Karl Trutnovsky Berührungsfreie Dichtungen : Grundlagen und Anwendungen der Strömung durch Spalte und Labyrinthe , 1973 .

[16]  S. J. Kline,et al.  Performance and Design of Straight, Two-Dimensional Diffusers , 1967 .

[17]  G. G. Hirs A Bulk-Flow Theory for Turbulence in Lubricant Films , 1973 .

[18]  J. Denton Loss Mechanisms in Turbomachines , 1993 .

[19]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[20]  M. Mcpherson,et al.  Introduction to fluid mechanics , 1997 .

[21]  H. Liepmann,et al.  Investigations on laminar boundary-layer stability and transition on curved boundaries , 1943 .

[22]  G. Williams,et al.  Internal flow systems , 1980 .

[23]  Douglas Ray Adkins Analyses of Hydrodynamic Forces on Centrifugal Pump Impellers , 1986 .

[24]  Frank Visser,et al.  Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades , 1994, Journal of Fluid Mechanics.

[25]  T. Pian,et al.  On the convergence of the finite element method for problems with singularity , 1973 .

[26]  F.,et al.  Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method , 2022 .

[27]  C. C. Nelson,et al.  Comparison of Hirs’ Equation With Moody’s Equation for Determining Rotordynamic Coefficients of Annular Pressure Seals , 1987 .

[28]  T. Tavares,et al.  Perspective: Unsteady Wing Theory—The Kármán/Sears Legacy , 1993 .

[29]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[30]  R. E. Nece,et al.  Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks , 1960 .

[31]  John D. Denton,et al.  The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines , 1993 .

[32]  V. Seshadri,et al.  Analysis of flow through centrifugal pump impellers by finite element method , 1989 .

[33]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[34]  Marina Ubaldi,et al.  An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow , 1994 .

[35]  R. K. Turton Rotodynamic pump design , 1994 .

[36]  Dara W. Childs,et al.  Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations , 1989 .

[37]  Christopher E. Brennen,et al.  Analyses of hydrodynamic radial forces on centrifugal pump impellers , 1988 .

[38]  Isaac Fried,et al.  Best Finite Elements Distribution around a Singularity , 1972 .

[39]  G. T. Csanady,et al.  Theory of turbomachines , 1964 .

[40]  F. Lyman,et al.  On the Conservation of Rothalpy in Turbomachines , 1992 .

[41]  Alexey J. Stepanoff,et al.  Centrifugal and Axial Flow Pumps: Theory, Design, and Application , 1991 .

[42]  Yutaka Yamada,et al.  Resistance of a Flow through an Annulus with an Inner Rotating Cylinder , 1961 .

[43]  A. Hamed,et al.  A New Approach in Cascade Flow Analysis Using the Finite Element Method , 1980 .

[44]  Jan B. Jonker,et al.  A parametric study of the cavitation inception behavior of a mixed-flow impeller using a three-dimensional potential flow model , 1997 .

[45]  Hans Wilhelm Försching,et al.  Grundlagen der Aeroelastik , 1974 .

[46]  Arnold Hartley Gibson,et al.  Hydraulics and its Applications , 1908, Nature.

[47]  H. Glauert The elements of aerofoil and airscrew theory , 1926 .

[48]  B. Szabó,et al.  p‐convergent finite element approximations in fracture mechanics , 1978 .

[49]  J. M. Owen,et al.  Flow and Heat Transfer in Rotating Disc Systems, Vol.1: Rotor-Stator Systems , 1989 .

[50]  B. Lakshminarayana Techniques for aerodynamic and turbulence measurements in turbomachinery rotors , 1980 .

[51]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[52]  D. G. Shepherd,et al.  Principles of Turbomachinery , 1956 .

[53]  R. E. Mayle,et al.  The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines , 1991 .

[54]  E. Ferguson,et al.  The various and ingenious machines of Agostino Ramelli (1588) , 1977 .