Probing Gravity with Spacetime Sirens

A gravitational observatory such as LISA will detect coalescing pairs of massive black holes, accurately measure their luminosity distance, and help identify a host galaxy or an electromagnetic counterpart. If dark energy is a manifestation of modified gravity on large scales, gravitational waves from cosmologically distant spacetime sirens are direct probes of this new physics. For example, a gravitational Hubble diagram based on black hole pair luminosity distances and host galaxy redshifts could reveal a large distance extradimensional leakage of gravity. Various additional signatures may be expected in a gravitational signal propagated over cosmological scales.

[1]  Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[2]  K. Koyama,et al.  More on ghosts in the Dvali-Gabadaze-Porrati model , 2006 .

[3]  Alberto Vecchio,et al.  LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[4]  M. Zaldarriaga,et al.  Bumpy black holes from spontaneous Lorentz violation , 2007, 0706.0288.

[5]  (Quasi)localized gauge field on a brane: Dissipating cosmic radiation to extra dimensions? , 2000, hep-th/0010071.

[6]  Z. Frei,et al.  TO BE SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 6/22/04 FINDING THE ELECTROMAGNETIC COUNTERPARTS OF COSMOLOGICAL STANDARD SIRENS , 2005 .

[7]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[8]  N. Kaloper,et al.  A New Perspective on DGP Gravity , 2007, 0707.2666.

[9]  Earth matter effects in supernova neutrinos: optimal detector locations , 2006, astro-ph/0604300.

[10]  Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.

[11]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[12]  M. May,et al.  Is modified gravity required by observations? An empirical consistency test of dark energy models , 2007, 0705.0165.

[13]  Takashi S. Nakamura,et al.  Response of interferometric detectors to scalar gravitational waves , 2000, gr-qc/0006079.

[14]  Detection strategies for scalar gravitational waves with interferometers and resonant spheres , 1999, gr-qc/9907055.

[15]  G. Starkman,et al.  Gravitational leakage into extra dimensions: Probing dark energy using local gravity , 2002, astro-ph/0212083.

[16]  C. Deffayet,et al.  Causal structure of bigravity solutions , 2005, hep-th/0508163.

[17]  R. Gregory,et al.  Opening up extra dimensions at ultralarge scales. , 2000, Physical review letters.

[18]  J. Cepa,et al.  Redshift-distance relations from type Ia supernova observations - New constraints on grey dust models , 2007, astro-ph/0701259.

[19]  G. Starkman,et al.  How a brane cosmological constant can trick us into thinking that w<-1 , 2004, astro-ph/0408246.

[20]  I. Tkachev,et al.  Massive graviton as a testable cold-dark-matter candidate. , 2005, Physical review letters.

[21]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[22]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[23]  Predictive Power of Strong Coupling in Theories with Large Distance Modified Gravity , 2006, hep-th/0610013.

[24]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[25]  Einstein-aether waves , 2004, gr-qc/0402005.

[26]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[27]  Cosmology on a Brane in Minkowski Bulk , 2000, hep-th/0010186.

[28]  Perturbations of the self-accelerated Universe , 2006, hep-th/0607099.

[29]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[30]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[31]  Daniel E. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006 .

[32]  Dimming supernovae without cosmic acceleration. , 2001, Physical review letters.

[33]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[34]  Jacob D. Bekenstein,et al.  Relativistic gravitation theory for the MOND paradigm , 2004, astro-ph/0403694.

[35]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[36]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[37]  Nonperturbative Continuity in Graviton Mass versus Perturbative Discontinuity , 2001, hep-th/0106001.

[38]  C. Deffayet,et al.  Bigravity and Lorentz-violating massive gravity , 2007, 0705.1982.

[39]  David Wands Extended gravity theories and the Einstein--Hilbert action , 1994 .

[40]  On the search of electromagnetic cosmological counterparts to coalescences of massive black hole binaries , 2006, astro-ph/0605624.

[41]  A. Loeb,et al.  Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays , 2002, astro-ph/0211556.

[42]  Echoing the extra dimension , 2003, hep-th/0307011.

[43]  Vitor Cardoso,et al.  Gravitational radiation in D-dimensional spacetimes , 2003 .

[44]  M. Zaldarriaga,et al.  The Accelerated universe and the moon , 2002, hep-ph/0212069.

[45]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[46]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[47]  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006 .

[48]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.