LMI-based Periodically Time-Varying Dynamical Controller Synthesis for Discrete-Time Uncertain Linear Systems

Abstract In this paper, we propose a new LMI-based method for robust state-feedback controller synthesis of discrete-time linear periodic/time-invariant systems subject to polytopic uncertainties. In stark contrast with existing approaches that are confined to static controller synthesis, we explore dynamic controller synthesis and reveal a particular periodically time-varying dynamical controller structure that allows LMI-based synthesis. In particular, we prove rigorously that the proposed design method encompasses the well-known extended-LMI-based design methods as particular cases. Through numerical experiments, we demonstrate that the suggested design method is indeed effective to achieve less conservative results.

[1]  D. Peaucelle,et al.  Robust Performance Analysis of Linear Time-Invariant Uncertain Systems by Taking Higher-Order Time-Derivatives of the State , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[2]  Dimitri Peaucelle,et al.  Robust H 2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs , 2005 .

[3]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[4]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[5]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[6]  Patrizio Colaneri,et al.  The extended periodic lyapunov lemma , 1985, Autom..

[7]  Venkataramanan Balakrishnan,et al.  A Unified Algebraic Approach to Linear Control Design, R.E. Skelton, T. Iwasaki and K. Grigoriadis, Taylor & Francis, London, UK, 1998, 285 pages. ISBN 0‐7484‐0592‐5 , 2002 .

[8]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[9]  Dimitri Peaucelle,et al.  Robust Hinfinity performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs , 2007, Syst. Control. Lett..

[10]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[11]  Dimitri Peaucelle,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..

[12]  D. Peaucelle,et al.  Robust analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[14]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2005, Autom..

[15]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[16]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[17]  Tomomichi Hagiwara,et al.  New dilated LMI characterizations for continuous-time multiobjective controller synthesis , 2004, Autom..

[18]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[19]  T. Fujii,et al.  Extended-space control design with parameter-dependent Lyapunov functions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[20]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[21]  Valter J. S. Leite,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[22]  Maurício C. de Oliveira,et al.  Robust Filtering of Discrete-Time Linear Systems with Parameter Dependent Lyapunov Functions , 2002, SIAM J. Control. Optim..