Nonoscillation for Functional Differential Equations of Mixed Type

Abstract An example is given to show that the linear autonomous functional differential equation of mixed type ẋ(t) + ∫1− 1[dμ(s)]x(t + s) = 0 may have a nonoscillatory solution in spite of the nonexistence of real roots of its characteristic equation. Under a regularity condition on μ at 1, exponential boundedness and asymptotic expansions are obtained for the nonoscillatory solutions.

[1]  Aldo Rustichini,et al.  Hopf bifurcation for functional differential equations of mixed type , 1989 .

[2]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[3]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[4]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[5]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[6]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[7]  J. Bell,et al.  Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory , 1986, Journal of mathematical biology.

[8]  H. Wilf,et al.  A class of linear differential-difference equations. , 1960 .

[9]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[10]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[11]  Aldo Rustichini,et al.  Functional differential equations of mixed type: The linear autonomous case , 1989 .

[12]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[13]  I. Györi,et al.  Oscillation criteria in delay equations , 1984 .

[14]  Olof J. Staffans,et al.  Volterra Integral and Functional Equations , 1990 .

[15]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[16]  C. H. Anderson The linear differential-difference equation with constant coefficients , 1972 .

[17]  S. Verblunsky On a Class of Differential-Difference Equations , 1956 .

[18]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .