External Current Dependence of Polarization Resistances for Reversible Solid Oxide and Protonic Ceramic Cells with Current Leakage

[1]  K. Amezawa,et al.  Comparison of electrochemical impedance spectra for electrolyte-supported solid oxide fuel cells (SOFCs) and protonic ceramic fuel cells (PCFCs) , 2021, Scientific Reports.

[2]  H. Sumi,et al.  Lanthanum-doped ceria interlayer between electrolyte and cathode for solid oxide fuel cells , 2021 .

[3]  Donglin Han,et al.  Proton Conductive BaZr0.8-xCexY0.2O3-δ: Influence of NiO Sintering Additive on Crystal Structure, Hydration Behavior, and Conduction Properties. , 2020, ChemSusChem.

[4]  T. Yamaguchi,et al.  Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells , 2020 .

[5]  J. Maier,et al.  Effect of NiO addition on proton uptake of BaZr1-xYxO3-x/2 and BaZr1-xScxO3-x/2 electrolytes , 2020 .

[6]  M. Heinzmann,et al.  Inductive Low‐Frequency Processes in PEMFC‐Impedance Spectra , 2020, Fuel Cells.

[7]  A. Nakajo,et al.  Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements , 2019, Journal of Power Sources.

[8]  Hyoungchul Kim,et al.  A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C , 2018, Nature Energy.

[9]  T. Jacobsen,et al.  The Impact of Strong Cathodic Polarization on Ni|YSZ Microelectrodes , 2018 .

[10]  S. Haile,et al.  Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells , 2018 .

[11]  T. Yamaguchi,et al.  Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol for Anode‐supported Microtubular Solid Oxide Fuel Cells , 2017 .

[12]  Ellen Ivers-Tiffée,et al.  Evaluation of electrochemical impedance spectra by the distribution of relaxation times , 2017 .

[13]  M. Mori,et al.  Blocking layer for prevention of current leakage for reversible solid oxide fuel cells and electrolysis cells with ceria-based electrolyte , 2017 .

[14]  S. Yamaguchi,et al.  Rate-determining elementary step of oxygen reduction reaction at (La,Sr)CoO 3 -based cathode surface , 2016 .

[15]  Ali Almansoori,et al.  Readily processed protonic ceramic fuel cells with high performance at low temperatures , 2015, Science.

[16]  H. Matsumoto,et al.  Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells , 2015, Scientific Reports.

[17]  Meilin Liu,et al.  Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. , 2014, ChemSusChem.

[18]  Toshio Suzuki,et al.  Effects of Anode Microstructure on Mechanical and Electrochemical Properties for Anode-Supported Microtubular Solid Oxide Fuel Cells , 2013 .

[19]  Toshio Suzuki,et al.  Impact of direct butane microtubular solid oxide fuel cells , 2012 .

[20]  M. Mori,et al.  Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300 Nm3 h−1 , 2010 .

[21]  E. Ivers-Tiffée,et al.  Impedance Study of Alternative ( La , Sr ) FeO3 − δ and ( La , Sr ) ( Co , Fe ) O3 − δ MIEC Cathode Compositions , 2010 .

[22]  S. Ebbesen,et al.  Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells , 2009 .

[23]  M. Mori,et al.  Investigation of Current Leakage of Micro-tubular SOFCs with a Ceria Membrane for Low-intermediate Temperature Power-generation Applications , 2009 .

[24]  H. Kageyama,et al.  Transport properties of Ba (Zr0.8Y0.2)O3- δ perovskite , 2007 .

[25]  M. Inaba,et al.  Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes , 2005 .

[26]  M. Inaba,et al.  Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs , 2005 .

[27]  J. Mizusaki,et al.  Interfacial reaction and electrochemical properties of dense (La,Sr) CoO3−δ cathode on YSZ (1 0 0) , 2005 .

[28]  Hiroshi Mori,et al.  Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4 , 2004 .

[29]  L. Gauckler,et al.  Engineering of Solid Oxide Fuel Cells with Ceria‐Based Electrolytes , 1998 .

[30]  H. Iwahara,et al.  Technological challenges in the application of proton conducting ceramics , 1995 .

[31]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .

[32]  R. N. Blumenthal,et al.  Electronic Transport in 8 Mole Percent Y[sub 2]O[sub 3]-ZrO[sub 2] , 1989 .

[33]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[34]  Donglin Han,et al.  Electrochemical and structural influence on BaZr 0.8 Y 0.2 O 3‐δ from manganese, cobalt, and iron oxide additives , 2019, Journal of the American Ceramic Society.

[35]  J. Maier,et al.  Oxygen Reduction at Dense Thin-Film Microelectrodes on a Proton-Conducting Electrolyte I. Considerations on Reaction Mechanism and Electronic Leakage Effects , 2015 .