Discovering New Type of Lead‐Free Cluster‐Based Hybrid Double Perovskite Derivatives with Chiral Optical Activities and Low X‐Ray Detection Limit

[1]  Chengmin Ji,et al.  Multilayered Alternating-Cations-Intercalation Chiral Hybrid Perovskites with High Circular Polarization Sensitivity. , 2022, Small.

[2]  K. Yamaguchi,et al.  “Template synthesis” of discrete metal clusters with two- or three-dimensional architectures , 2022, Coordination Chemistry Reviews.

[3]  Wenxiong Lin,et al.  Chain-to-Layer Dimensionality Engineering of Chiral Hybrid Perovskites to Realize Passive Highly Circular-Polarization-Sensitive Photodetection. , 2022, Journal of the American Chemical Society.

[4]  Qiong Ye,et al.  Chiral Rashba Ferroelectrics for Circularly Polarized Light Detection , 2022, Advanced materials.

[5]  Xitao Liu,et al.  Tailoring the Distinctive Chiral‐Polar Perovskites with Alternating Cations in the Interlayer Space for Self‐Driven Circularly Polarized Light Detection , 2022, Advanced Optical Materials.

[6]  Angshuman Nag,et al.  Chiral Methylbenzylammonium Bismuth Iodide with Zero-Dimensional Perovskite Derivative Structure , 2022, The Journal of Physical Chemistry C.

[7]  P. Feng,et al.  Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function , 2021, National science review.

[8]  Hongchun Wu,et al.  Polar Photovoltaic Effect in Chiral Alternating Cations Intercalation‐Type Perovskites Driving Self‐Powered Ultraviolet Circularly Polarized Light Detection , 2022 .

[9]  S. Liu,et al.  First‐Principles Calculation Design for 2D Perovskite to Suppress Ion Migration for High‐Performance X‐ray Detection , 2021, Advanced Functional Materials.

[10]  D. Mitzi,et al.  Alkyl-Aryl Cation Mixing in Chiral 2D Perovskites. , 2021, Journal of the American Chemical Society.

[11]  M. Hong,et al.  Highly Efficient White-Light Emission Induced by Carboxylic Acid Dimers in a Layered Hybrid Perovskite , 2021 .

[12]  Xitao Liu,et al.  Heterogeneous Integration of Chiral Lead-Chloride Perovskite Crystals with Si Wafer for Boosted Circularly Polarized Light Detection in Solar-Blind Ultraviolet Region. , 2021, Small.

[13]  Xitao Liu,et al.  Realization of vis-NIR Dual-Modal Circularly Polarized Light Detection in Chiral Perovskite Bulk Crystals. , 2021, Journal of the American Chemical Society.

[14]  Yong Ai,et al.  A hybrid organic-inorganic perovskite with robust SHG switching , 2021, Chinese Chemical Letters.

[15]  Yuzhen Wang,et al.  Tunable phase transition, band gap and SHG properties by halogen replacement of hybrid perovskites [(thiomorpholinium)PbX3, X = Cl, Br, I] , 2021, Chinese Chemical Letters.

[16]  Shichao Wu,et al.  Chirality-Dependent Second-order Nonlinear Optical Effects in 1D Organic-Inorganic Hybrid Perovskites Bulk Single Crystal. , 2021, Angewandte Chemie.

[17]  Dehui Li,et al.  Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties , 2021, Advanced materials.

[18]  Xitao Liu,et al.  Rational design of high-quality 2D/3D perovskite heterostructure crystals for record-performance polarization-sensitive photodetection , 2021, National science review.

[19]  X. Tao,et al.  Chiral halide perovskite crystals for optoelectronic applications , 2021 .

[20]  H. Karunadasa,et al.  Doubling the Stakes: The Promise of Halide Double Perovskites. , 2021, Angewandte Chemie.

[21]  K. Zhao,et al.  Centimeter‐Sized Single Crystals of Two‐Dimensional Hybrid Iodide Double Perovskite (4,4‐Difluoropiperidinium)4AgBiI8 for High‐Temperature Ferroelectricity and Efficient X‐Ray Detection , 2021, Advanced Functional Materials.

[22]  Xitao Liu,et al.  Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. , 2020, Angewandte Chemie.

[23]  D. R. Khanal,et al.  Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic-Inorganic Perovskites. , 2020, ACS nano.

[24]  Xin-Xiong Li,et al.  Three-dimensional metal-halide open frameworks , 2020 .

[25]  Wei Huang,et al.  Centimeter-sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ion for Efficient X-ray Detection. , 2020, Angewandte Chemie.

[26]  Xitao Liu,et al.  Exploring Unprecedented Room-Temperature Ferroelectric of Two-Dimensional Metal Halide Double Perovskite with X-ray-Sensitive Merits. , 2020, Angewandte Chemie.

[27]  M. Kanatzidis,et al.  Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection , 2020, Nature Communications.

[28]  Lei Lu,et al.  Recent Advances and Optoelectronic Applications of Lead-Free Halide Double Perovskites. , 2020, Chemistry.

[29]  M. Kanatzidis,et al.  Three-dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. , 2020, Journal of the American Chemical Society.

[30]  M. Saidaminov,et al.  Chiral-perovskite optoelectronics , 2020, Nature Reviews Materials.

[31]  M. Yuan,et al.  Chiral Reduced-Dimensional Perovskite for Efficient Flexible Circularly Polarized Light Photodetector. , 2020, Angewandte Chemie.

[32]  Lixin Xiao,et al.  From Pb to Bi: A Promising Family of Pb‐Free Optoelectronic Materials and Devices , 2019, Advanced Energy Materials.

[33]  Bin Yang,et al.  Charge-Carrier Dynamics of Lead-Free Halide Perovskite Nanocrystals. , 2019, Accounts of chemical research.

[34]  X. Miao,et al.  Hot‐Pressed CsPbBr3 Quasi‐Monocrystalline Film for Sensitive Direct X‐ray Detection , 2019, Advanced materials.

[35]  Han Zhang,et al.  Chiral Perovskites: Promising Materials toward Next-Generation Optoelectronics. , 2019, Small.

[36]  Dehui Li,et al.  Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection. , 2019, ACS nano.

[37]  Xitao Liu,et al.  A Lead-Free Hybrid Iodide with Quantitative Response to X-ray Radiation , 2019, Chemistry of Materials.

[38]  Guangda Niu,et al.  Circularly polarized light detection using chiral hybrid perovskite , 2019, Nature Communications.

[39]  D. Mitzi,et al.  Direct-Bandgap 2D Silver-Bismuth Iodide Double Perovskite: The Structure-Directing Influence of an Oligothiophene Spacer Cation. , 2019, Journal of the American Chemical Society.

[40]  Haotong Wei,et al.  Halide lead perovskites for ionizing radiation detection , 2019, Nature Communications.

[41]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[42]  M. Kanatzidis,et al.  Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. , 2018, Journal of the American Chemical Society.

[43]  Yuanhui Sun,et al.  Rational Design of Halide Double Perovskites for Optoelectronic Applications , 2018, Joule.

[44]  D. Waldeck,et al.  Imprinting Chirality onto the Electronic States of Colloidal Perovskite Nanoplatelets , 2018, Advanced materials.

[45]  J. Neaton,et al.  Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6. , 2018, Journal of the American Chemical Society.

[46]  Guangda Niu,et al.  Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit , 2017 .

[47]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[48]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[49]  Safa Kasap,et al.  Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector. , 2012, Medical physics.

[50]  M. Kanatzidis,et al.  Dimensional Reduction: A Design Tool for New Radiation Detection Materials , 2011, Advanced materials.

[51]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[52]  Safa Kasap,et al.  Charge collection and absorption-limited sensitivity of x-ray photoconductors: Applications to a-Se and HgI2 , 2002 .

[53]  Safa Kasap,et al.  X-ray sensitivity of photoconductors: application to stabilized a-Se , 2000 .