The role of mesh quality and mesh quality indicators in the virtual element method

Since its introduction, the Virtual Element Method (VEM) was shown to be able to deal with a large variety of polygons, while achieving good convergence rates. The regularity assumptions proposed in the VEM literature to guarantee the convergence on a theoretical basis are therefore quite general. They have been deduced in analogy to the similar conditions developed in the Finite Element Methods (FEMs) analysis. In this work, we experimentally show that the VEM still converges with almost optimal rates and low errors in the L and H norms even if we significantly break the regularity assumptions that are used in the literature. These results suggest that the regularity assumptions proposed so far might be overestimated. We also exhibit examples on which the VEM sub-optimally converges or diverges. Finally, we introduce a mesh quality indicator that experimentally correlates the entity of the violation of the regularity assumptions and the performance of the VEM solution, thus predicting if a dataset is potentially critical for VEM.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  G. Manzini,et al.  Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.

[3]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[4]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[5]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[6]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[7]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[8]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[9]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[10]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[11]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[12]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[13]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[14]  G. Vacca,et al.  Sharper error estimates for Virtual Elements and a bubble-enriched version , 2020, SIAM J. Numer. Anal..

[15]  Silvia Bertoluzza,et al.  Stabilization of the nonconforming virtual element method , 2021, Comput. Math. Appl..

[16]  M. Spagnuolo,et al.  Benchmark of Polygon Quality Metrics for Polytopal Element Methods , 2019, ArXiv.

[17]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[18]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[19]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[20]  Gianmarco Manzini,et al.  Hourglass stabilization and the virtual element method , 2015 .

[21]  Gianmarco Manzini,et al.  Convergence Analysis of the mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients , 2016, SIAM J. Numer. Anal..

[22]  Stefano Berrone,et al.  A Parallel Solver for Large Scale DFN Flow Simulations , 2015, SIAM J. Sci. Comput..

[23]  L. Beirao da Veiga,et al.  H(div) and H(curl)-conforming VEM , 2014, 1407.6822.

[24]  G. Vacca,et al.  The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..

[25]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..

[26]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[27]  Gianmarco Manzini,et al.  Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..

[28]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[29]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[30]  L. Mascotto,et al.  Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..

[31]  Gianmarco Manzini,et al.  Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .

[32]  Daniela Cabiddu,et al.  Benchmarking the geometrical robustness of a Virtual Element Poisson solver , 2021, Math. Comput. Simul..

[33]  Glaucio H. Paulino,et al.  Bridging art and engineering using Escher-based virtual elements , 2015 .

[34]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[35]  Marco Livesu,et al.  Cinolib: A Generic Programming Header Only C++ Library for Processing Polygonal and Polyhedral Meshes , 2019, Trans. Comput. Sci..

[36]  M. Putti,et al.  Post processing of solution and flux for the nodal mimetic finite difference method , 2015 .

[37]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[38]  Lars Ludwig,et al.  Finite element superconvergence on Shishkin meshes for convection–diffusion problems with corner singularities , 2014 .

[39]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[40]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[41]  Long Chen FINITE ELEMENT METHOD , 2013 .

[42]  G. Burton Sobolev Spaces , 2013 .

[43]  Paola F. Antonietti,et al.  The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..

[44]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[45]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[46]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[47]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.