Molecular dissection of t(11;17) in acute myeloid leukemia reveals a variety of gene fusions with heterogeneous fusion transcripts and multiple splice variants

The majority of translocations that involve the long arms of chromosomes 11 and 17 in acute myeloid leukemia appear identical on the cytogenetic level. Nevertheless, they are diverse on the molecular level. At present, two genes are known in 11q23 and four in 17q12‐25 that generate five distinct fusion genes: MLL‐MLLT6/AF17, MLL‐LASP1, MLL‐ACACA or MLL‐SEPT9/MSF, and ZBTB16/PLZF‐RARA. We analyzed 14 cases with a t(11;17) by fluorescence in situ hybridization and molecular genetic techniques and determined the molecular characteristics of their fusion genes. We identified six different gene fusions that comprised seven cases with a MLL‐MLLT6/AF17, three with a MLL‐SEPT9/MSF, and one each with MLL‐LASP1, MLL‐ACACA, and ZBTB16/PLZF‐RARA fusions. In the remaining case, a MLL‐SEPT6/Xq24 fusion suggested a complex rearrangement. The MLL‐MLLT6/AF17 transcripts were extremely heterogeneous and the detection of seven different in‐frame transcript and splice variants enabled us to predict the protein domains relevant for leukemogenesis. The putative MLL‐MLLT6 consensus chimeric protein consists of the AT‐hook DNA‐binding, the methyltransferase, and the CXXC zinc‐finger domains of MLL and the highly conserved octapeptide and the leucine‐zipper dimerization motifs of MLLT6. The MLL‐SEPT9 transcripts showed a similar high degree of variability. These analyses prove that the diverse types of t(11;17)‐associated fusion genes can be reliably identified and delineated with a proper combination of cytogenetic and molecular genetic techniques. The heterogeneity of transcripts encountered in cases with MLL‐MLLT6/AF17 and MLL‐SEPT9/MSF fusions clearly demonstrates that thorough attention has to be paid to the appropriate selection of primers to cover all these hitherto unrecognized fusion variants. © 2006 Wiley‐Liss, Inc.

[1]  M. Teixeira,et al.  SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23) , 2006, Oncogene.

[2]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[3]  K. Döhner,et al.  AML bearing the translocation t(11;17)(q23;q21): involvement of MLL and a region close to RARA, with no differentiation response to retinoic acid , 2005, Annals of Hematology.

[4]  T. Taki,et al.  Identification of a Chromosomal Breakpoint and Detection of a Novel Form of an MLL- AF17 Fusion Transcript in Acute Monocytic Leukemia with t(11;17)(q23;q21) , 2005, International journal of hematology.

[5]  C. Dunphy,et al.  Two cases of acute myeloid leukemia with t(11;17) associated with varying morphology and immunophenotype: rearrangement of the MLL gene and a region proximal to the RARα gene , 2005 .

[6]  C. Berthou,et al.  Rearrangement of the MLL gene in acute myeloblastic leukemia: report of two rare translocations. , 2005, Cancer genetics and cytogenetics.

[7]  Steven D. P. Moore,et al.  Acute myelocytic leukemia with t(11;17)(q23;q12-q21) involves a fusion of MLL and AF17. , 2005, Cancer genetics and cytogenetics.

[8]  R. Pieters,et al.  Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Dessen,et al.  An Atlas on genes and chromosomes in oncology and haematology. , 2004, Cellular and molecular biology.

[10]  J. Cayuela,et al.  A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia , 2004, Leukemia.

[11]  M. Cleary,et al.  Dimerization: a versatile switch for oncogenesis. , 2004, Blood.

[12]  C. Mannhalter,et al.  The biological and clinical significance of MLL abnormalities in haematological malignancies , 2004, European journal of clinical investigation.

[13]  M. Eguchi,et al.  The small oligomerization domain of gephyrin converts MLL to an oncogene. , 2004, Blood.

[14]  T. Rabbitts,et al.  Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. , 2004, Genes & development.

[15]  K Kojima,et al.  FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11)(q21;q23) , 2004, Leukemia.

[16]  P. Hall,et al.  Properties of SEPT9 isoforms and the requirement for GTP binding , 2004, The Journal of pathology.

[17]  Chi Wai So,et al.  Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. , 2004, Blood.

[18]  B. Johansson,et al.  Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer , 2004, Nature Genetics.

[19]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[20]  P. Amrein,et al.  A new case of t(11;17)(q23;q21) with MLL rearrangement. , 2004, Cancer Genetics and Cytogenetics.

[21]  Jen-Fen Fu,et al.  Molecular analysis of t(X;11)(q24;q23) in an infant with AML‐M4 , 2003, Genes, chromosomes & cancer.

[22]  W. Hiddemann,et al.  AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. , 2003, Blood.

[23]  Hee-Jin Kim,et al.  MLL/SEPTIN6 chimeric transcript from inv ins(X;11)(q24;q23q13) in acute monocytic leukemia: Report of a case and review of the literature , 2003, Genes, chromosomes & cancer.

[24]  M. Greaves,et al.  Origins of chromosome translocations in childhood leukaemia , 2003, Nature Reviews Cancer.

[25]  M. Cleary,et al.  Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. , 2003, Cancer cell.

[26]  Raouf Fetni,et al.  Rearrangement of the MLL gene and a region proximal to the RARalpha gene in a case of acute myelocytic leukemia M5 with a t(11;17)(q23;q21). , 2003, Cancer genetics and cytogenetics.

[27]  A. Borkhardt,et al.  The human LASP1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21) , 2003, Oncogene.

[28]  C. Ferraz,et al.  The Leucine Zipper Motif of the Drosophila AF10 Homologue Can Inhibit PRE-Mediated Repression: Implications for Leukemogenic Activity of Human MLL-AF10 Fusions , 2003, Molecular and Cellular Biology.

[29]  N. Zeleznik-Le,et al.  Mammalian septins nomenclature. , 2002, Molecular biology of the cell.

[30]  N. Osheroff,et al.  MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site , 2002, Oncogene.

[31]  O. Miura,et al.  Fusion ofMLL andMSF in Adult De Novo Acute Myelomonocytic Leukemia (M4) with T(11;17)(Q23;Q25) , 2002, International journal of hematology.

[32]  M. Cleary,et al.  The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. , 2002, Blood.

[33]  M. König,et al.  A highly specific and sensitive fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias , 2002, British journal of haematology.

[34]  Y. Hayashi,et al.  SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. , 2002, Cancer research.

[35]  J. F. Burrows,et al.  Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3 , 2001, Oncogene.

[36]  A. Borkhardt,et al.  An ins(X;11)(q24;q23) fuses the MLL and the Septin 6/KIAA0128 gene in an infant with AML‐M2 , 2001, Genes, chromosomes & cancer.

[37]  M. König,et al.  Multiplex reverse transcriptase-polymerase chain reaction screening in childhood acute myeloblastic leukemia. , 2001, Blood.

[38]  V. Solovyev,et al.  Analysis of canonical and non-canonical splice sites in mammalian genomes. , 2000, Nucleic acids research.

[39]  A. Hagemeijer,et al.  A DNA probe combination for improved detection of MLL/11q23 breakpoints by double‐color interphase‐FISH in acute leukemias , 2000, Genes, chromosomes & cancer.

[40]  F. Watzinger,et al.  Cryptic splice site activation during RNA processing of MLL/AF4 chimeric transcripts in infants with t(4;11) positive ALL. , 2000, Gene.

[41]  P. Nowell,et al.  Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Kaplan,et al.  Involvement of the MLL and RARα genes in a patient with acute monocytic leukemia with t(11;17)(q23;q12) , 2000, Leukemia.

[43]  E. Petty,et al.  Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. , 2000, Genomics.

[44]  Y. Hayashi,et al.  AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). , 1999, Cancer research.

[45]  M. Osaka,et al.  MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. Rappaport,et al.  t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Johansson,et al.  Ten novel 11q23 chromosomal partner sites , 1998, Leukemia.

[48]  R. Wells,et al.  Fusion of retinoic acid receptor α to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia , 1997, Nature Genetics.

[49]  R. Marschalek,et al.  Exon/intron structure of the human ALL‐1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias , 1996, British journal of haematology.

[50]  F. Mitelman ISCN 1995 : an international system for human cytogenetic nomenclature (1995) : recommendations of the International Standing Committee on Human Cytogenetic Nomenclature : Memphis, Tennessee, USA, October 9-13, 1994 , 1995 .

[51]  R. Berger,et al.  A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. , 1995, Blood.

[52]  C. Croce,et al.  Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L. Kearney,et al.  A case of acute monocytic leukemia with t(11;17) involving a rearrangement of MLL-1 and a region proximal to the RARA gene. , 1994, Cancer genetics and cytogenetics.

[54]  A. Zelent,et al.  PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Dunphy,et al.  Short communication Two cases of acute myeloid leukemia with t(11;17) associated with varying morphology and immunophenotype: rearrangement of the MLL gene and a region proximal to the RARa gene , 2005 .

[56]  Y. Hayashi,et al.  SEPTIN 6 , a Human Homologue to Mouse Septin 6 , Is Fused to MLL in Infant Acute Myeloid Leukemia with Complex Chromosomal Abnormalities Involving 11 q 23 and Xq 241 , 2002 .

[57]  J. Magaud,et al.  Clinical and biological characteristics of adult de novo and secondary acute myeloid leukemia with balanced 11q23 chromosomal anomaly or MLL gene rearrangement compared to cases with unbalanced 11q23 anomaly: confirmation of the existence of different entities with 11q23 breakpoint , 1998, Leukemia.

[58]  Iscn International System for Human Cytogenetic Nomenclature , 1978 .

[59]  T. L. Cleave A case of acute monocytic leukaemia. , 1951, Journal of the Royal Naval Medical Service.

[60]  Franck Viguié t ( 11 ; 17 ) ( q 23 ; q 21 ) , 2022 .