New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem
暂无分享,去创建一个
[1] Jeffrey K. Uhlmann,et al. A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[2] Ruben Martinez-Cantin. Active Map Learning for Robots: Insights into Statistical Consistency , 2008 .
[3] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[4] Sylvain Le Corff,et al. Online Expectation Maximization based algorithms for inference in Hidden Markov Models , 2011, 1108.3968.
[5] D. Pierre. Forward Smoothing Using Sequential Monte Carlo , 2009 .
[6] É. Moulines,et al. Online Expectation Maximization algorithm to solve the SLAM problem , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).
[7] O. Cappé,et al. On‐line expectation–maximization algorithm for latent data models , 2009 .
[8] Gersende Fort,et al. Convergence of a Particle-Based Approximation of the Block Online Expectation Maximization Algorithm , 2011, TOMC.
[9] Eduardo Mario Nebot,et al. Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[10] F. LeGland,et al. Recursive estimation in hidden Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[11] Sebastian Thrun,et al. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.
[12] Sebastian Thrun,et al. Probabilistic robotics , 2002, CACM.
[13] Olivier Capp'e. Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.
[14] D. Titterington. Recursive Parameter Estimation Using Incomplete Data , 1984 .