New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem

In this contribution, new online EM algorithms are proposed to perform inference in general hidden Markov models. These algorithms update the parameter at some deterministic times and use Sequential Monte Carlo methods to compute approximations of filtering distributions. Their convergence properties are addressed in [9] and [10]. In this paper, the performance of these algorithms are highlighted in the challenging framework of Simultaneous Localization and Mapping.

[1]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[2]  Ruben Martinez-Cantin Active Map Learning for Robots: Insights into Statistical Consistency , 2008 .

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  Sylvain Le Corff,et al.  Online Expectation Maximization based algorithms for inference in Hidden Markov Models , 2011, 1108.3968.

[5]  D. Pierre Forward Smoothing Using Sequential Monte Carlo , 2009 .

[6]  É. Moulines,et al.  Online Expectation Maximization algorithm to solve the SLAM problem , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[7]  O. Cappé,et al.  On‐line expectation–maximization algorithm for latent data models , 2009 .

[8]  Gersende Fort,et al.  Convergence of a Particle-Based Approximation of the Block Online Expectation Maximization Algorithm , 2011, TOMC.

[9]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  F. LeGland,et al.  Recursive estimation in hidden Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[12]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[13]  Olivier Capp'e Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.

[14]  D. Titterington Recursive Parameter Estimation Using Incomplete Data , 1984 .