Discrete Optimal Transport: Complexity, Geometry and Applications

In this article, we introduce a new algorithm for solving discrete optimal transport based on iterative resolutions of local versions of the dual linear program. We show a quantitative link between the complexity of this algorithm and the geometry of the underlying measures in the quadratic Euclidean case. This discrete method is then applied to investigate two optimal transport problems with geometric flavor: the regularity of optimal transport plan on oblate ellipsoids, and Alexandrov’s problem of reconstructing a convex set from its Gaussian measure.

[1]  P. Gruber,et al.  Optimum Quantization and Its Applications , 2004 .

[2]  Cédric Villani,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS , 2011 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[5]  Pavel Tvrdík,et al.  Towards auction algorithms for large dense assignment problems , 2009, Comput. Optim. Appl..

[6]  C. Villani Optimal Transport: Old and New , 2008 .

[7]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[8]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[9]  A. V. Pogorelov,et al.  Monge-Ampère equations of elliptic type , 1964 .

[10]  Benoît R. Kloeckner Approximation by finitely supported measures , 2010, 1003.1035.

[11]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[12]  Vladimir Oliker,et al.  On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .

[13]  V. Oliker Embedding Sn into Rn+1 with given integral Gauss curvature and optimal mass transport on Sn , 2007 .

[14]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[15]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[16]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[17]  Adam M. Oberman,et al.  Numerical solution of the second boundary value problem for the Elliptic Monge-Amp ere equation , 2012 .

[18]  L. Caffarelli,et al.  Weak solutions of one inverse problem in geometric optics , 2008 .

[19]  Micha Sharir,et al.  Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications , 1995, SCG '95.

[20]  N. Shor Nondifferentiable Optimization and Polynomial Problems , 1998 .

[21]  Mauro Dell'Amico,et al.  8. Quadratic Assignment Problems: Algorithms , 2009 .

[22]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[23]  Dimitri P. Bertsekas,et al.  Dual coordinate step methods for linear network flow problems , 1988, Math. Program..

[24]  J'erome Bertrand,et al.  Prescription of Gauss curvature using optimal mass transport , 2015, Geometriae Dedicata.

[25]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .

[26]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[27]  Adrian S. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.

[28]  Convexity of injectivity domains on the ellipsoid of revolution: The oblate case , 2010 .