Impact of Stoichiometry on Structural and Optical Properties of Sputter Deposited Multicomponent Tellurite Glass Films

Multicomponent TeO2–Bi2O3–ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. We observed that thin films sputtered in an oxygen-rich environment are optically transparent while those sputtered in an oxygen-deficient environment exhibit broadband absorption. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy which revealed that the presence of under-coordinated Te leads to the observed optical absorption in oxygen-deficient films.

[1]  Maurizio Ferrari,et al.  Intrinsic defects and glass stability in Er3+ doped TeO2 glasses and the implications for Er3+-doped tellurite fiber amplifiers , 2003 .

[2]  Maurizio Ferrari,et al.  Er3+-doped tellurite waveguides deposited by excimer laser ablation , 2003 .

[3]  John Ballato,et al.  Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting , 2010 .

[4]  V. Novikov,et al.  Tungsten–tellurite glasses and thin films doped with rare-earth elements produced by radio frequency magnetron deposition , 2008 .

[5]  M. Mattarelli,et al.  Pulsed Laser Deposition of Er doped tellurite films on large area , 2007 .

[6]  P. Siciliano,et al.  Optical Absorption of Tellurium Suboxide Thin Films , 1993 .

[7]  C. Heo,et al.  Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics , 2005 .

[8]  Tanya M Monro,et al.  Tellurite microspheres for nanoparticle sensing and novel light sources. , 2014, Optics express.

[9]  H. Ticha,et al.  Remark on the optical gap in ZnO–Bi2O3–TeO2 glasses , 2007 .

[10]  A. Jha,et al.  Spectroscopic Properties of Rare Earth Metal Ion Doped Tellurium Oxide Glasses and Fibres , 2004 .

[11]  J. D. Musgraves,et al.  Influence of Hydroxyl Group on IR Transparency of Tellurite‐Based Glasses , 2014 .

[12]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[13]  Juejun Hu,et al.  Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals. , 2012, Optics express.

[14]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[15]  M. Mahdi,et al.  Structural and optical properties of Er3 +-Yb3 + codoped multicomposition TeO2-ZnO-PbO-TiO2-Na2O glass , 2013 .

[16]  P. Siciliano,et al.  Optical absorption and structural characterization of reactively sputtered tellurium suboxide thin films , 1993 .

[17]  K. Dalby,et al.  Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: An X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study , 2011 .

[18]  Clara Rivero-Baleine,et al.  Processing of Tellurite-Based Glass with Low OH Content , 2011 .

[19]  R. El-Mallawany,et al.  UV-IR spectra of new tellurite glasses , 2002 .

[20]  T. Sekiya,et al.  Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses , 1992 .

[21]  Toshinobu Yoko,et al.  Nonlinear Optical Properties of TeO2‐Based Glasses: MOx‐TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) Binary Glasses , 1995 .

[22]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[23]  S. Madden,et al.  Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics. , 2009, Optics express.

[24]  A. Ricco,et al.  X‐ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: Correlation of photoelectrochemical and capacitance‐potential behavior with surface chemical composition , 1984 .

[25]  Van de Sanden,et al.  B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon , 2009 .

[26]  K. Sreenivas,et al.  Growth of amorphous TeOx (2≤x≤3) thin film by radio frequency sputtering , 2007 .

[27]  Qiu Jianrong,et al.  EXAFS of tellurium in the glasses of the B2O3TeO2 system , 1992 .

[28]  S. Prawer,et al.  Diamond in Tellurite Glass: a New Medium for Quantum Information , 2011, Advanced materials.

[29]  S. Uthanna,et al.  Effect of Oxygen Partial Pressure on the Electrical and Optical Properties of DC Magnetron Sputtered Amorphous Films , 2013 .

[30]  W. Morgan,et al.  Inner-orbital binding-energy shifts of antimony and bismuth compounds , 1973 .

[31]  J. D. Musgraves,et al.  In fl uence of Bi 2 O 3 content on the crystallization behavior of TeO 2 – Bi 2 O 3 – ZnO glass system , 2012 .

[32]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[33]  L. Wenger,et al.  Local structure and redox state of copper in tellurite glasses , 2004 .

[34]  T. Minami,et al.  Raman spectra of TeO2-based glasses and glassy liquids : local structure change with temperature in relation to fragility of liquid , 1994 .

[35]  L. Petit,et al.  Estimation of peak Raman gain coefficients for Barium-Bismuth-Tellurite glasses from spontaneous Raman cross-section experiments. , 2009, Optics express.

[36]  L. Nasi,et al.  Sputtered stoichiometric TeO2 glass films: Dispersion of linear and nonlinear optical properties , 2003 .

[37]  G. Sigel,et al.  Spectroscopic Analysis of the Structure and Properties of Alkali Tellurite Glasses , 1992 .

[38]  C. Rüssel,et al.  Effect of ZnO and Bi2O3 addition on linear and non-linear optical properties of tellurite glasses , 2007 .

[39]  G. B. Reddy,et al.  Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films , 2004 .

[40]  G. Stegeman,et al.  Influence of modifier oxides on the structural and optical properties of binary TeO2 glasses , 2007 .

[41]  T. Merle-Méjean,et al.  Dynamics and structure of TeO2 polymorphs : Model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases , 2000 .

[42]  Animesh Jha,et al.  Tellurite glass lasers operating close to 2 μm , 2010 .

[43]  L. Wenger,et al.  X-Ray photoelectron spectroscopy (XPS) studies of copper–sodium tellurite glasses , 2003 .

[44]  J. I. Mackenzie,et al.  Er-doped tellurite waveguides for power amplifier applications , 2014, Photonics West - Optoelectronic Materials and Devices.

[45]  Katsuhisa Tanaka,et al.  Optical second harmonic generation in poled MgOZnOTeO2 and B2O3TeO2 glasses , 1996 .

[46]  J. D. Musgraves,et al.  Influence of Bi2O3 content on the crystallization behavior of TeO2–Bi2O3–ZnO glass system , 2012 .

[47]  J. D. Musgraves,et al.  Impact of tellurite-based glass structure on Raman gain , 2012 .

[48]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[49]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[50]  B. Bousquet,et al.  Glass Structure and Optical Nonlinearities in Thallium(I) Tellurium(IV) Oxide Glasses , 1999 .

[51]  C. Ye,et al.  δ-Bi2O3 thin films prepared by reactive sputtering:Fabrication and characterization , 2006 .

[52]  H. Ebendorff‐Heidepriem,et al.  Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass. , 2009, Optics express.

[53]  Yasutake Ohishi,et al.  Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2–ZnO–Nb2O5–MoO3 quaternary glass system , 2007 .

[54]  Vinay Gupta,et al.  Optical waveguiding in amorphous tellurium oxide thin films , 2003 .