Aktive Anode auf Molybdänbasis für dehydrierende Kupplungen

[1]  Timothy J. Donohoe,et al.  Hexafluoroisopropanol as a highly versatile solvent , 2017 .

[2]  D. Schollmeyer,et al.  Insights into the Mechanism of Anodic N-N Bond Formation by Dehydrogenative Coupling. , 2017, Journal of the American Chemical Society.

[3]  Miaomiao Liu,et al.  Fine Chemicals Prepared by Bamboo Lignin Degradation through Electrocatalytic Redox between Cu Cathode and Pb/PbO2 Anode in Alkali Solution , 2017 .

[4]  Lian-Kui Wu,et al.  A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction , 2017 .

[5]  B. Kirchner,et al.  The Catalytic Effect of Fluoroalcohol Mixtures Depends on Domain Formation , 2017 .

[6]  T. Ivandini,et al.  Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. , 2017, Chemical communications.

[7]  Dieter Schollmeyer,et al.  Selektive Synthese teilgeschützter unsymmetrischer Biphenole durch reagens‐ und metallfreie anodische Kreuzkupplung , 2016 .

[8]  D. Schollmeyer,et al.  Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent- and Metal-Free Anodic Cross-Coupling Reaction. , 2016, Angewandte Chemie.

[9]  D. Schollmeyer,et al.  Access to Pyrazolidin-3,5-diones through Anodic N-N Bond Formation. , 2016, Angewandte Chemie.

[10]  Siegfried R. Waldvogel,et al.  Zugang zu Pyrazolidin‐3,5‐dionen durch anodischen N‐N‐Bindungsaufbau , 2016 .

[11]  Y. Nishina,et al.  Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction , 2016, Scientific Reports.

[12]  Phil S. Baran,et al.  Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method , 2016, ACS central science.

[13]  S. Waldvogel,et al.  MoV Reagents in Organic Synthesis , 2016 .

[14]  Siegfried R. Waldvogel,et al.  Überoxidation als Schlüsselschritt im Mechanismus der MoCl5‐ vermittelten dehydrierenden Arenkupplung , 2016 .

[15]  P. Franzmann,et al.  Over-Oxidation as the Key Step in the Mechanism of the MoCl5-Mediated Dehydrogenative Coupling of Arenes. , 2016, Angewandte Chemie.

[16]  D. Schollmeyer,et al.  Treatment of black liquor (BL) by adsorption on AE resins and a subsequent electrochemical degradation of BL to obtain vanillin , 2016 .

[17]  K. Müllen,et al.  Tetrabenzo[a,f,j,o]perylene: a polycyclic aromatic hydrocarbon with an open-shell singlet biradical ground state. , 2015, Angewandte Chemie.

[18]  Siegfried R. Waldvogel,et al.  Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors , 2015 .

[19]  D. Schollmeyer,et al.  Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol. , 2015, Chemistry.

[20]  Zhi‐hua Liu,et al.  Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution , 2015 .

[21]  M. Struchkova,et al.  A Practical Anodic Oxidation of Aminofurazans to Azofurazans: an environmentally friendly route , 2015 .

[22]  S. Waldvogel,et al.  Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption , 2015, Beilstein journal of organic chemistry.

[23]  S. Waldvogel,et al.  Initial radical cation pathway in the Mo2Cl10-mediated dehydrogenative arene coupling. , 2015, Chemistry.

[24]  Matthew W. Kanan,et al.  Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes , 2015 .

[25]  Siegfried R. Waldvogel,et al.  Leistungsstarkes Fluoralkoxy‐Molybdän(V)‐Reagens für die selektive oxidative Arenkupplung , 2014 .

[26]  D. Schollmeyer,et al.  Powerful fluoroalkoxy molybdenum(V) reagent for selective oxidative arene coupling reaction. , 2014, Angewandte Chemie.

[27]  Holger Butenschön,et al.  Oxidative aromatische Kupplung und Scholl‐Reaktion im Vergleich , 2013 .

[28]  K. Skonieczny,et al.  Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.

[29]  A. Staubitz,et al.  Dual selectivity: electrophile and nucleophile selective cross-coupling reactions on a single aromatic substrate. , 2013, Organic letters.

[30]  A. Staubitz,et al.  Chemoselective cross-coupling reactions with differentiation between two nucleophilic sites on a single aromatic substrate. , 2012, Organic letters.

[31]  G. Georg,et al.  Synthesis and evaluation of the anti-proliferative and NF-κB activities of a library of simplified tylophorine analogs. , 2012, Bioorganic & medicinal chemistry.

[32]  S. Waldvogel,et al.  Oxidative transformation of aryls using molybdenum pentachloride. , 2012, Chemical communications.

[33]  R. Kötz,et al.  Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol , 2012 .

[34]  N. A. Ghalwa,et al.  Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes , 2016 .

[35]  Yao‐Ting Wu,et al.  Cobalt‐Catalyzed Carbon‐Carbon Bond Formation: Synthesis and Applications of Enantiopure Pyrrolidine Derivatives[1] , 2011 .

[36]  J. Utley,et al.  Electro-organic reactions. Part 60[1]. The electro-oxidative conversion at laboratory scale of a lignosulfonate into vanillin in an FM01 filter press flow reactor: preparative and mechanistic aspects , 2011 .

[37]  T. Dohi,et al.  Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts , 2010 .

[38]  K. Morimoto,et al.  Hypervalent iodine(III): selective and efficient single-electron-transfer (SET) oxidizing agent , 2009 .

[39]  K. Morimoto,et al.  Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media. , 2007, Chemical communications.

[40]  J. R. Vargas-Garcia,et al.  Oxygen reduction reaction on cobalt-nickel alloys prepared by mechanical alloying , 2007 .

[41]  B. T. King,et al.  Controlling the Scholl reaction. , 2007, The Journal of organic chemistry.

[42]  K. Morimoto,et al.  Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant. , 2005, Angewandte Chemie.

[43]  R. Fröhlich,et al.  Iodinated Biaryls Synthesized by the Direct Dehydrodimerization of Iodoarenes Using Phenyliodine(III) Bis(trifluoroacetate) (PIFA) , 2004 .

[44]  G. Gambaretto,et al.  Electrochemical fluorination: state of the art and future tendences , 2004 .

[45]  S. Waldvogel The Reaction Pattern of the MoCl5-Mediated Oxidative Aryl-aryl Coupling , 2002 .

[46]  U. Tamer,et al.  Electrosynthesis of 4,4′-dinitroazobenzene on PbO2 electrodes , 2002 .

[47]  N. Boden,et al.  Synthesis of dibromotetraalkoxybiphenyls using ferric chloride , 2000 .

[48]  E. M. Belgsir,et al.  Biomass conversion: attempted electrooxidation of lignin for vanillin production , 2000 .

[49]  J. Halpert,et al.  2,2',3,3',6,6'-hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. , 1999, Chemical research in toxicology.

[50]  L. Piszczek,et al.  Galvanostatic electrochemical reduction of pentoses , 1992 .

[51]  H. Viertler,et al.  Electroorganic reactions. 38. Mechanism of electrooxidative cleavage of lignin model dimers , 1991 .

[52]  E. Tarter,et al.  BEHAVIOR OF LEAD ELECTRODES IN SULFURIC ACID SOLUTIONS. II , 1969 .

[53]  F. Popp,et al.  Electrolytic Reduction of Organic Compounds. , 1962 .

[54]  J. Simons,et al.  Production of Fluorocarbons III. From Hydrogen Fluoride‐Soluble Organic Substances , 1949 .