Aktive Anode auf Molybdänbasis für dehydrierende Kupplungen
暂无分享,去创建一个
Siegfried R. Waldvogel | W. Schade | S. Beil | T. Müller | U. Karst | Sydney B. Sillart | Peter Franzmann | A. Bomm | Michael Holtkamp
[1] Timothy J. Donohoe,et al. Hexafluoroisopropanol as a highly versatile solvent , 2017 .
[2] D. Schollmeyer,et al. Insights into the Mechanism of Anodic N-N Bond Formation by Dehydrogenative Coupling. , 2017, Journal of the American Chemical Society.
[3] Miaomiao Liu,et al. Fine Chemicals Prepared by Bamboo Lignin Degradation through Electrocatalytic Redox between Cu Cathode and Pb/PbO2 Anode in Alkali Solution , 2017 .
[4] Lian-Kui Wu,et al. A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction , 2017 .
[5] B. Kirchner,et al. The Catalytic Effect of Fluoroalcohol Mixtures Depends on Domain Formation , 2017 .
[6] T. Ivandini,et al. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. , 2017, Chemical communications.
[7] Dieter Schollmeyer,et al. Selektive Synthese teilgeschützter unsymmetrischer Biphenole durch reagens‐ und metallfreie anodische Kreuzkupplung , 2016 .
[8] D. Schollmeyer,et al. Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent- and Metal-Free Anodic Cross-Coupling Reaction. , 2016, Angewandte Chemie.
[9] D. Schollmeyer,et al. Access to Pyrazolidin-3,5-diones through Anodic N-N Bond Formation. , 2016, Angewandte Chemie.
[10] Siegfried R. Waldvogel,et al. Zugang zu Pyrazolidin‐3,5‐dionen durch anodischen N‐N‐Bindungsaufbau , 2016 .
[11] Y. Nishina,et al. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction , 2016, Scientific Reports.
[12] Phil S. Baran,et al. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method , 2016, ACS central science.
[13] S. Waldvogel,et al. MoV Reagents in Organic Synthesis , 2016 .
[14] Siegfried R. Waldvogel,et al. Überoxidation als Schlüsselschritt im Mechanismus der MoCl5‐ vermittelten dehydrierenden Arenkupplung , 2016 .
[15] P. Franzmann,et al. Over-Oxidation as the Key Step in the Mechanism of the MoCl5-Mediated Dehydrogenative Coupling of Arenes. , 2016, Angewandte Chemie.
[16] D. Schollmeyer,et al. Treatment of black liquor (BL) by adsorption on AE resins and a subsequent electrochemical degradation of BL to obtain vanillin , 2016 .
[17] K. Müllen,et al. Tetrabenzo[a,f,j,o]perylene: a polycyclic aromatic hydrocarbon with an open-shell singlet biradical ground state. , 2015, Angewandte Chemie.
[18] Siegfried R. Waldvogel,et al. Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors , 2015 .
[19] D. Schollmeyer,et al. Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol. , 2015, Chemistry.
[20] Zhi‐hua Liu,et al. Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution , 2015 .
[21] M. Struchkova,et al. A Practical Anodic Oxidation of Aminofurazans to Azofurazans: an environmentally friendly route , 2015 .
[22] S. Waldvogel,et al. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption , 2015, Beilstein journal of organic chemistry.
[23] S. Waldvogel,et al. Initial radical cation pathway in the Mo2Cl10-mediated dehydrogenative arene coupling. , 2015, Chemistry.
[24] Matthew W. Kanan,et al. Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes , 2015 .
[25] Siegfried R. Waldvogel,et al. Leistungsstarkes Fluoralkoxy‐Molybdän(V)‐Reagens für die selektive oxidative Arenkupplung , 2014 .
[26] D. Schollmeyer,et al. Powerful fluoroalkoxy molybdenum(V) reagent for selective oxidative arene coupling reaction. , 2014, Angewandte Chemie.
[27] Holger Butenschön,et al. Oxidative aromatische Kupplung und Scholl‐Reaktion im Vergleich , 2013 .
[28] K. Skonieczny,et al. Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.
[29] A. Staubitz,et al. Dual selectivity: electrophile and nucleophile selective cross-coupling reactions on a single aromatic substrate. , 2013, Organic letters.
[30] A. Staubitz,et al. Chemoselective cross-coupling reactions with differentiation between two nucleophilic sites on a single aromatic substrate. , 2012, Organic letters.
[31] G. Georg,et al. Synthesis and evaluation of the anti-proliferative and NF-κB activities of a library of simplified tylophorine analogs. , 2012, Bioorganic & medicinal chemistry.
[32] S. Waldvogel,et al. Oxidative transformation of aryls using molybdenum pentachloride. , 2012, Chemical communications.
[33] R. Kötz,et al. Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol , 2012 .
[34] N. A. Ghalwa,et al. Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes , 2016 .
[35] Yao‐Ting Wu,et al. Cobalt‐Catalyzed Carbon‐Carbon Bond Formation: Synthesis and Applications of Enantiopure Pyrrolidine Derivatives[1] , 2011 .
[36] J. Utley,et al. Electro-organic reactions. Part 60[1]. The electro-oxidative conversion at laboratory scale of a lignosulfonate into vanillin in an FM01 filter press flow reactor: preparative and mechanistic aspects , 2011 .
[37] T. Dohi,et al. Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts , 2010 .
[38] K. Morimoto,et al. Hypervalent iodine(III): selective and efficient single-electron-transfer (SET) oxidizing agent , 2009 .
[39] K. Morimoto,et al. Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media. , 2007, Chemical communications.
[40] J. R. Vargas-Garcia,et al. Oxygen reduction reaction on cobalt-nickel alloys prepared by mechanical alloying , 2007 .
[41] B. T. King,et al. Controlling the Scholl reaction. , 2007, The Journal of organic chemistry.
[42] K. Morimoto,et al. Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant. , 2005, Angewandte Chemie.
[43] R. Fröhlich,et al. Iodinated Biaryls Synthesized by the Direct Dehydrodimerization of Iodoarenes Using Phenyliodine(III) Bis(trifluoroacetate) (PIFA) , 2004 .
[44] G. Gambaretto,et al. Electrochemical fluorination: state of the art and future tendences , 2004 .
[45] S. Waldvogel. The Reaction Pattern of the MoCl5-Mediated Oxidative Aryl-aryl Coupling , 2002 .
[46] U. Tamer,et al. Electrosynthesis of 4,4′-dinitroazobenzene on PbO2 electrodes , 2002 .
[47] N. Boden,et al. Synthesis of dibromotetraalkoxybiphenyls using ferric chloride , 2000 .
[48] E. M. Belgsir,et al. Biomass conversion: attempted electrooxidation of lignin for vanillin production , 2000 .
[49] J. Halpert,et al. 2,2',3,3',6,6'-hexachlorobiphenyl hydroxylation by active site mutants of cytochrome P450 2B1 and 2B11. , 1999, Chemical research in toxicology.
[50] L. Piszczek,et al. Galvanostatic electrochemical reduction of pentoses , 1992 .
[51] H. Viertler,et al. Electroorganic reactions. 38. Mechanism of electrooxidative cleavage of lignin model dimers , 1991 .
[52] E. Tarter,et al. BEHAVIOR OF LEAD ELECTRODES IN SULFURIC ACID SOLUTIONS. II , 1969 .
[53] F. Popp,et al. Electrolytic Reduction of Organic Compounds. , 1962 .
[54] J. Simons,et al. Production of Fluorocarbons III. From Hydrogen Fluoride‐Soluble Organic Substances , 1949 .