CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.

[1]  Jörn Beyer,et al.  Highly efficient heralding of entangled single photons. , 2012, Optics express.

[2]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[3]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[4]  A. Zeilinger,et al.  Three-color Sagnac source of polarization-entangled photon pairs. , 2009, Optics express.

[5]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[6]  Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source , 2013, 1303.2780.

[7]  R. Prevedel,et al.  Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.

[8]  Rupert Ursin,et al.  High-fidelity transmission of entanglement over a high-loss free-space channel , 2009, 0902.2015.

[9]  M. Peev,et al.  Practical quantum key distribution with polarization entangled photons , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[10]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[11]  Masahide Sasaki,et al.  Widely tunable single photon source with high purity at telecom wavelength. , 2013, Optics express.

[12]  E. Jeffrey,et al.  Phase-compensated ultra-bright source of entangled photons , 2005, 2005 Quantum Electronics and Laser Science Conference.

[13]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[14]  Masato Koashi,et al.  Wide-band quantum interface for visible-to-telecommunication wavelength conversion. , 2011, Nature communications.

[15]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[16]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[17]  Guang-Can Guo,et al.  Orbital angular momentum photonic quantum interface , 2016, Light, science & applications.

[18]  Pulsed sagnac source of polarisation entangled photon pairs , 2012, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[19]  Raymond Laflamme,et al.  Entanglement-based quantum key distribution with biased basis choice via free space. , 2013, Optics express.

[20]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[21]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[22]  B. Shi,et al.  An ultra-broadband continuously-tunable polarization-entangled photon-pair source covering the C+L telecom bands based on a single type-II PPKTP crystal , 2012, 1211.4419.

[23]  Masahide Sasaki,et al.  Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[24]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[25]  Franco N. C. Wong,et al.  Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch , 2004 .

[26]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[27]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[28]  Jeffrey H. Shapiro,et al.  Efficient generation of polarization-entangled photons in a nonlinear crystal , 2006 .

[29]  H. Jing,et al.  Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state , 2005, quant-ph/0511083.

[30]  Valerio Pruneri,et al.  Phase-stable source of polarization-entangled photons in a linear double-pass configuration. , 2013, Optics express.

[31]  J. M. Donohue,et al.  Experimental violation of three families of Bell's inequalities , 2013 .

[32]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[33]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[34]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[35]  B. Sanders,et al.  Long-distance practical quantum key distribution by entanglement swapping. , 2010, Optics express.

[36]  Onur Kuzucu,et al.  Pulsed Sagnac source of narrow-band polarization-entangled photons , 2007, 0710.5390.