Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries

Society’s long-standing energy demands have fuelled for centuries the quest for power-dense, portable and economically viable energy carriers. Since the birth of the first rechargeable battery in 1860 [1], emerging battery technologies have provided both answers to these demands as well as additional obstacles. One ubiquitous energy storage device, the metal or metalion battery, offers quintessential examples of both. The strongly reducing nature of Group 1 and 2 metal ions qualifies these elements as viable energy-dense anode materials: standard reduction potentials several volts below that of the standard hydrogen electrode (SHE) allow a thermodynamically favourable oxidation of these metals to readily release electrons that shuttle through an external circuit, generating the electric current that serves as the power supply during battery discharge. Integration of energy-dense materials into devices allows power sources to be compact and portable, by maximizing energy output per unit mass of material. Further, the reversibility of these oxidation events makes possible extensive battery cycling, thus providing a rechargeable power source. Indeed, current Li-ion batteries boast an energy density of 265 Wh kg−1, with the potential of a 20% improvement, and are operable for over 1000 charge–discharge cycles [2]. Although the chemical properties of metal-ion batteries offer impressive performance and exciting possibilities, harnessing the power of such reactive workhorses in a controlled manner comes with its own challenges. In Li-ion batteries, formation of Li dendrites during charging can puncture the battery

[1]  R. Dahlstrom,et al.  Challenges and opportunities , 2021, Foundations of a Sustainable Economy.

[2]  Bingbing Chen,et al.  Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. , 2018, Chemical Society reviews.

[3]  Allison C Hinckley,et al.  Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage. , 2018, Journal of the American Chemical Society.

[4]  Huaiguo Xue,et al.  Derivatives of coordination compounds for rechargeable batteries , 2018 .

[5]  Jing Li,et al.  Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. , 2018, Chemical Society reviews.

[6]  Luyi Yang,et al.  Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries , 2018, Nano Energy.

[7]  Haijun Yu,et al.  Emerging Nonaqueous Aluminum‐Ion Batteries: Challenges, Status, and Perspectives , 2018, Advanced materials.

[8]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[9]  Jonathan L. Brosmer,et al.  Creating Lithium‐Ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks , 2018, Advanced materials.

[10]  D. Jiang,et al.  Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. , 2018, Journal of the American Chemical Society.

[11]  Hui‐Ming Cheng,et al.  Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage , 2018, Nature Chemistry.

[12]  Jie Zhang,et al.  Hybridization of metal–organic frameworks and task-specific ionic liquids: fundamentals and challenges , 2018 .

[13]  Hongwei Chen,et al.  Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. , 2018, Journal of the American Chemical Society.

[14]  G. Shimizu,et al.  Achieving Superprotonic Conduction in Metal-Organic Frameworks through Iterative Design Advances. , 2018, Journal of the American Chemical Society.

[15]  Claudiu B. Bucur Challenges of a Rechargeable Magnesium Battery , 2018 .

[16]  Jiangtao Hu,et al.  A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery , 2018, Advanced materials.

[17]  X. Lou,et al.  Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges , 2017, Science Advances.

[18]  Bo Wang,et al.  Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. , 2017, Chemical Society reviews.

[19]  B. McCloskey,et al.  Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries , 2017 .

[20]  M. Dincǎ,et al.  Single-Ion Li+, Na+, and Mg2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[21]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[22]  Takashi Kitao,et al.  Hybridization of MOFs and polymers. , 2017, Chemical Society reviews.

[23]  Wenhao Ren,et al.  Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. , 2017, Small.

[24]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[25]  K. Hatakeyama,et al.  Proton conductors produced by chemical modifications of carbon allotropes, perovskites and metal organic frameworks , 2017 .

[26]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[27]  Xing Meng,et al.  Proton-conducting crystalline porous materials. , 2017, Chemical Society reviews.

[28]  Ji‐Guang Zhang,et al.  Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science , 2017 .

[29]  R. Vedarajan,et al.  Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage , 2017 .

[30]  M. Walkowiak,et al.  Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks , 2016 .

[31]  X. Duan,et al.  Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. , 2016, Journal of the American Chemical Society.

[32]  Joon Ching Juan,et al.  A review of polymer electrolytes: fundamental, approaches and applications , 2016, Ionics.

[33]  P. Qi,et al.  Inorganic and organic hybrid solid electrolytes for lithium-ion batteries , 2016 .

[34]  F. Aguesse,et al.  Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity , 2016 .

[35]  V. Stavila,et al.  Liquid‐Like Ionic Conduction in Solid Lithium and Sodium Monocarba‐closo‐Decaborates Near or at Room Temperature , 2016 .

[36]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[37]  Sehee Lee,et al.  Ionic Covalent Organic Frameworks with Spiroborate Linkage. , 2016, Angewandte Chemie.

[38]  Bo Wang,et al.  Metal–organic frameworks for energy storage: Batteries and supercapacitors , 2016 .

[39]  H. Kitagawa,et al.  Ionic liquid transported into metal–organic frameworks , 2016 .

[40]  Ji‐Guang Zhang,et al.  Lithium Metal Anodes and Rechargeable Lithium Metal Batteries , 2016 .

[41]  Hiroshi Kitagawa,et al.  Proton-conductive metal-organic frameworks , 2016 .

[42]  Yutao Li,et al.  Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br) , 2016 .

[43]  Teppei Yamada,et al.  Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid , 2015 .

[44]  Shuai Li,et al.  Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites , 2015 .

[45]  William R. Dichtel,et al.  Tetraarylborate polymer networks as single-ion conducting solid electrolytes† †Electronic supplementary information (ESI) available: Adsorption isotherms, IR spectra, synthetic procedures, characterization data, equivalent circuit diagrams and additional SEM images. See DOI: 10.1039/c5sc02052b Click , 2015, Chemical science.

[46]  F. Ke,et al.  Metal-organic frameworks for lithium ion batteries and supercapacitors , 2015 .

[47]  Emmanuel C. Alozie,et al.  Promises and Challenges , 2015 .

[48]  Kang Xu,et al.  “Electrolytes for Lithium and Lithium-Ion Batteries” , 2015 .

[49]  S. Ball “Electrolytes for Lithium and Lithium-Ion Batteries” , 2015 .

[50]  M. A. Kulandainathan,et al.  Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries , 2014 .

[51]  Yexiang Liu,et al.  A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte , 2014 .

[52]  M. A. Kulandainathan,et al.  Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries , 2014 .

[53]  M. A. Kulandainathan,et al.  Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries , 2014 .

[54]  M. Dincǎ,et al.  Cation exchange at the secondary building units of metal-organic frameworks. , 2014, Chemical Society reviews.

[55]  M. Marcinek,et al.  New trivalent imidazole-derived salt for lithium-ion cell electrolyte , 2014 .

[56]  J. Long,et al.  Metal–organic frameworks as solid magnesium electrolytes , 2014 .

[57]  Zhian Zhang,et al.  Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework , 2013 .

[58]  Teppei Yamada,et al.  Designer coordination polymers: dimensional crossover architectures and proton conduction. , 2013, Chemical Society reviews.

[59]  Rob Ameloot,et al.  Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. , 2013, Chemistry.

[60]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[61]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[62]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[63]  K. Lillerud,et al.  H2 storage in isostructural UiO-67 and UiO-66 MOFs. , 2012, Physical chemistry chemical physics : PCCP.

[64]  J. Long,et al.  A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. , 2011, Journal of the American Chemical Society.

[65]  Claus Daniel,et al.  Handbook of Battery Materials: DANIEL:HBK BATTERY MAT E2 O-BK , 2011 .

[66]  W. Sakamoto,et al.  Plastic crystalline lithium salt with solid-state ionic conductivity and high lithium transport number. , 2011, Chemical communications.

[67]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[68]  H. Wiemhöfer,et al.  Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study , 2011 .

[69]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[70]  P. Kurzweil,et al.  Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery , 2010 .

[71]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[72]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[73]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[74]  D. Desmarteau,et al.  Dilithium bis[(perfluoroalkyl)sulfonyl]diimide salts as electrolytes for rechargeable lithium batteries , 2004 .

[75]  J. Nie,et al.  Synthesis and characterization of a novel electrolyte based on bis[(perfluoroalkyl)sulfonyl]triimide trianion , 2004 .

[76]  J. Yang,et al.  Solid polymer electrolytes from dilithium salts based on new bis((perfluoroalkyl)sulfonyl)diimide dianions. Preparation and electrical characterization , 2002 .

[77]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[78]  T. Clark,et al.  REACTIONS OF THE LITHIUM SALTS OF THE TRIBENZYLIDENEMETHANE DIANION, DIPHENYLACETONE DIANION, AND RELATED COMPOUNDS , 1998 .

[79]  D. J. Bannister,et al.  Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers , 1984 .

[80]  D. Shriver,et al.  Chloride ion conductivity in a plasticized quaternary ammonium polymer , 1984 .

[81]  S. Hackwood,et al.  Physical techniques for the study of solid electrolytes , 1981 .