Rapid catalyst identification for the synthesis of the pyrimidinone core of HIV integrase inhibitors.

A microscale chemistry improvement engine: a pre-dosed microscale high-throughput experimentation additives platform enables rapid, serendipitous reaction improvement. This platform allowed one chemist to set up 475 experiments and analyze the results using MISER chromatography in a single day, thus resulting in two high-quality catalytic systems for the construction of the title compound 1. Support for a single-electron transfer mechanism was obtained.

[1]  Gary A. Molander,et al.  Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides--reaction discovery using parallel microscale experimentation. , 2008, Journal of the American Chemical Society.

[2]  M. T. Reetz,et al.  Super‐Hochdurchsatz‐Screening von enantioselektiven Katalysatoren mittels parallelisierter Kapillarelektrophorese , 2000 .

[3]  O. Trapp,et al.  Hochdurchsatz‐Screening von Katalysatoren durch Integration von Reaktion und Analyse , 2007 .

[4]  Takehiko Kitamori,et al.  A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions , 2004, Science.

[5]  Hua Zhou,et al.  Efficient synthesis of functionalized pyrimidones via microwave-accelerated rearrangement reaction , 2006 .

[6]  Ian W Davies,et al.  Looking Forward in Pharmaceutical Process Chemistry , 2009, Science.

[7]  T. Webb,et al.  2-Substituted-4,5-dihydroxypyrimidine-6-carboxamide antiviral targeted libraries. , 2009, Journal of combinatorial chemistry.

[8]  E. Nowakowska,et al.  Synthesis and pharmacological assessment of derivatives of isoxazolo[4,5-d]pyrimidine. , 2004, Bioorganic & medicinal chemistry.

[9]  Christopher J. Welch,et al.  MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph , 2010 .

[10]  Sven K. Weber,et al.  High-throughput screening of catalysts by combining reaction and analysis. , 2007, Angewandte Chemie.

[11]  J. Armstrong,et al.  Highly selective synthesis of 2-substituted-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid derivatives using a novel protected dihydroxyfumarate , 2004 .

[12]  K. Houk,et al.  A polar radical pair pathway to assemble the pyrimidinone core of the HIV integrase inhibitor raltegravir potassium. , 2008, Angewandte Chemie.

[13]  Yong-Li Zhong,et al.  Development of a Second-Generation, Highly Efficient Manufacturing Route for the HIV Integrase Inhibitor Raltegravir Potassium , 2011 .

[14]  S. Stahl,et al.  Copper-catalyzed aerobic oxidative functionalization of an arene C-H bond: evidence for an aryl-copper(III) intermediate. , 2010, Journal of the American Chemical Society.

[15]  R. Francesco,et al.  HCV NS5b RNA-Dependent RNA Polymerase Inhibitors: From α,γ-Diketoacids to 4,5-Dihydroxypyrimidine- or 3-Methyl-5- hydroxypyrimidinonecarboxylic Acids. Design and Synthesis , 2004 .

[16]  Detlev Belder,et al.  Super-High-Throughput Screening of Enantioselective Catalysts by Using Capillary Array Electrophoresis. , 2000, Angewandte Chemie.

[17]  D. Hazuda,et al.  Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. , 2008, Journal of medicinal chemistry.

[18]  Christopher K Prier,et al.  Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity , 2011, Science.

[19]  T. Culbertson Synthesis of 5,6-dihydroxy-2-phenyl-4-pyrimidinecarboxylic acid, methyl ester, a corrected structure , 1979 .

[20]  G. Molander,et al.  Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides: a simplified route to diverse boronate ester derivatives. , 2010, Journal of the American Chemical Society.

[21]  H. Mitsuya,et al.  Increase of the adenallene anti-HIV activity in cell culture using its bis(tBuSATE) phosphotriester derivative. , 2002, Bioorganic & medicinal chemistry letters.

[22]  D. E. O'Brien,et al.  Pyrimidines. XIX. Pyrimido[4,5-e]dihydro-1,3-oxazines and related compounds , 1967 .

[23]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.