Energy Harvesting Smart Textiles

The ever-increasing population of the world is putting a significant demand on the need for multifunctional electronic devices and electricity to power them. This growing demand has led to an enhanced focus on the development of energy harvesting techniques based on renewable and ambient sources. Although materials having unique properties such as photovoltaic, piezoelectric and triboelectric have been known for a long time and have been utilized usually in the form of thin-film structures, their utilization in the form of textile structures for energy harvesting is a relatively new area of research. This chapter will focus on the recent advances in the area of photovoltaic, piezoelectric and triboelectric energy-generating textile structures and the fundamentals of these unique properties, production methods and textile-based energy storage. Finally, expected future trends in the fabrication and application of textile-based energy harvesting and storage will be discussed.

[1]  E. Sawaguchi Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 , 1953 .

[2]  N. S. Sariciftci,et al.  Polymeric photovoltaic materials , 1999 .

[3]  Yuming Cui,et al.  One-pot synthesis of α-Fe2O3 nanospheres by solvothermal method , 2013, Nanoscale Research Letters.

[4]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[5]  Niyazi Serdar Sariciftci,et al.  Hybrid solar cells , 2008 .

[6]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[7]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  J. Werner,et al.  50 μm thin solar cells with 17.0% efficiency , 2009 .

[9]  Martin A. Green,et al.  Detailed balance limit for the series constrained two terminal tandem solar cell , 2002 .

[10]  Erik Nilsson,et al.  Poling and characterization of piezoelectric polymer fibers for use in textile sensors , 2013 .

[11]  W. Jack Hughes,et al.  Capped ceramic underwater sound projector: The “cymbal” transducer , 1999 .

[12]  Liwei Lin,et al.  Large array electrospun PVDF nanogenerators on a flexible substrate , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[13]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[14]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[15]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.

[16]  L. Egerton,et al.  Piezoelectric and Dielectric Properties of Ceramics in the System Potassium—Sodium Niobate , 1959 .

[17]  S. Hoshino,et al.  X-Ray Study of the Phase Transition in Lead Titanate , 1950 .

[18]  Andrew J. Lovinger,et al.  Poly(Vinylidene Fluoride) , 1982 .

[19]  Hongxia Wang,et al.  Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs , 2013 .

[20]  E. Fukada,et al.  Piezoelectricity in oriented DNA films , 1972 .

[21]  Mm Martijn Wienk,et al.  Double and triple junction polymer solar cells processed from solution , 2007 .

[22]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[23]  A. Ambrosy,et al.  Piezoelectric PVDF films as ultrasonic transducers , 1984 .

[24]  Elias Siores,et al.  Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy , 2010 .

[25]  Martin A. Green,et al.  21.5% Efficient thin silicon solar cell , 1996 .

[26]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[27]  Christoph J. Brabec,et al.  Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells , 2008 .

[28]  R. Anderson,et al.  Piezoelectricity in polymers , 1980 .

[29]  J. Herbert,et al.  The Applications of Ferroelectric Polymers , 1988 .

[30]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[31]  J. Vacanti,et al.  A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. , 2003, Biomaterials.

[32]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[33]  Neil C. Greenham,et al.  PHOTOINDUCED ELECTRON TRANSFER FROM CONJUGATED POLYMERS TO CDSE NANOCRYSTALS , 1999 .

[34]  Elias Siores,et al.  A piezoelectric fibre composite based energy harvesting device for potential wearable applications , 2008 .

[35]  Ashraful Islam,et al.  Integrated dye-sensitized solar cell module with conversion efficiency of 8.2% , 2009 .

[36]  Denzel Bridges,et al.  Electrospinning of nanofibers and their applications for energy devices , 2015 .

[37]  X. Qin,et al.  Filtration properties of electrospinning nanofibers , 2006 .

[38]  W. Sigmund,et al.  Electrospun materials for energy harvesting, conversion, and storage: A review , 2010 .

[39]  R. King,et al.  Next-generation, high-efficiency III-V multijunction solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[40]  Hidetoshi Miura,et al.  High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. , 2004, Journal of the American Chemical Society.

[41]  Viresh Dutta,et al.  Thin‐film solar cells: an overview , 2004 .

[42]  Y. Fuh,et al.  A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers , 2014 .

[43]  S. Lanceros‐Méndez,et al.  Atomistic modelling of processes involved in poling of PVDF , 2005 .

[44]  Jea-Gun Park,et al.  Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies , 2015 .

[45]  N. Soin,et al.  Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. , 2015, Chemical communications.

[46]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[47]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[48]  Sarah R. Kurtz,et al.  29.5%‐efficient GaInP/GaAs tandem solar cells , 1994 .

[49]  Tong Lin,et al.  Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes , 2011 .

[50]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[51]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[52]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[53]  H. R. Gallantree Review of transducer applications of polyvinylidene fluoride , 1983 .

[54]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[55]  Zhong Lin Wang,et al.  Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. , 2015, ACS nano.

[56]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[57]  V. A. Bazhenov,et al.  Piezoelectric properties of wood , 1961 .

[58]  Clarisse Ribeiro,et al.  Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes , 2010 .

[59]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[60]  Giyoong Tae,et al.  Efficient Polymer Solar Cells Fabricated by Simple Brush Painting , 2007 .

[61]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[62]  Tetsuro Tanaka,et al.  Piezoelectric devices in Japan , 1982 .

[63]  E. Fukada On the Piezoelectric Effect of Silk Fibers , 1956 .

[64]  Eiichi Fukada,et al.  Piezoelectric Effects in Collagen , 1964 .

[65]  B. E. Springett,et al.  Physics of electrophotography , 1993 .

[66]  P. Ajayan,et al.  Flexible piezoelectric ZnO-paper nanocomposite strain sensor. , 2010, Small.

[67]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[68]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[69]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[70]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[71]  Ralph S. Woollett,et al.  Basic problems caused by depth and size constraints in low‐frequency underwater transducers , 1979 .

[72]  J. Duchesne,et al.  Thermal and Electrical Properties of Nucleic Acids and Proteins , 1960, Nature.

[73]  Michael Grätzel,et al.  Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell , 2009 .

[74]  Tae Yun Kim,et al.  Nanopatterned textile-based wearable triboelectric nanogenerator. , 2015, ACS nano.

[75]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[76]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[77]  Nuanyang Cui,et al.  Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. , 2012, Nano letters.

[78]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[79]  Pirjo Heikkilä,et al.  Electrospinning of Polyamides With Different Chain Compositions for Filtration Application , 2008 .

[80]  Peng Wang,et al.  Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. , 2003, Journal of the American Chemical Society.

[81]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[82]  J. González,et al.  Transport properties of two finite armchair graphene nanoribbons , 2013, Nanoscale Research Letters.

[83]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[84]  D. Berlincourt Piezoelectric ceramics: Characteristics and applications , 1980 .

[85]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[86]  F. Rebentrost,et al.  Sensitization of charge injection into semiconductors with large band gap , 1968 .

[87]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[88]  Yeong Hwan Ko,et al.  Multi-stacked PDMS-based triboelectric generators with conductive textile for efficient energy harvesting , 2015 .

[89]  Yves Leterrier,et al.  Mechanical integrity of dye-sensitized photovoltaic fibers , 2006 .

[90]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[91]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[92]  G. Calogero,et al.  A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells , 2011 .

[93]  Mukesh Kumar Singh,et al.  Flexible Photovoltaic Textiles for Smart Applications , 2011 .

[94]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[95]  George M. Whitesides,et al.  Electrostatic self-assembly of macroscopic crystals using contact electrification , 2003, Nature materials.

[96]  Elias Siores,et al.  Continuous production of piezoelectric PVDF fibre for e-textile applications , 2013 .

[97]  G. Shirane,et al.  Crystal Structure of Pb(Zr-Ti)O3 , 1952 .

[98]  Yong Qin,et al.  Wearable Triboelectric Generator for Powering the Portable Electronic Devices. , 2015, ACS applied materials & interfaces.

[99]  Eiichi Fukada,et al.  PIEZOELECTRIC PROPERTIES OF ORGANIC POLYMERS , 1974 .

[100]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[101]  S. Ramakrishna,et al.  Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. , 2005, Biomaterials.

[102]  Eiichi Fukada,et al.  Piezoelectricity of Wood , 1955 .

[103]  S. Yamaguchi Surface electric fields of tourmaline , 1983 .

[104]  J. Yu,et al.  Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties , 2013, Nanoscale Research Letters.

[105]  O. Nur,et al.  Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric , 2015 .

[106]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[107]  G. Konstantatos,et al.  Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .

[108]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[109]  G. Cao,et al.  A Self‐Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium‐Ion Battery for Wearable Electronics , 2015, Advanced materials.

[110]  M. Grätzel Dye-sensitized solar cells , 2003 .

[111]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[112]  J. Lannutti,et al.  Electrospinning for tissue engineering scaffolds , 2007 .

[113]  J. Yu,et al.  Tunable growth of urchin-shaped ZnO nanostructures on patterned transparent substrates , 2012 .

[114]  Niyazi Serdar Sariciftci,et al.  A Photovoltaic Fiber Design for Smart Textiles , 2010 .

[115]  Aihua He,et al.  Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning , 2007 .

[116]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[117]  A. McL. Nicolson,et al.  The Piezo Electric Effect in the Composite Rochelle Salt Crystal , 1919, Transactions of the American Institute of Electrical Engineers.

[118]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[119]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[120]  P. Richardson Piezoelectric polymers , 1989, IEEE Engineering in Medicine and Biology Magazine.

[121]  Liduo Wang,et al.  Review of recent progress in solid-state dye-sensitized solar cells , 2006 .

[122]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[123]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[124]  Elias Siores,et al.  Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications , 2014 .

[125]  R. E. Collins,et al.  Piezoelectricity and pyroelectricity in polyvinylidene fluoride—A model , 1978 .

[126]  K. Magniez,et al.  Effect of drawing on the molecular orientation and polymorphism of melt‐spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors , 2013 .

[127]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[128]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[129]  Seeram Ramakrishna,et al.  Electrospun nanofibrous filtration membrane , 2006 .

[130]  Max Shtein,et al.  Fiber based organic photovoltaic devices , 2008 .

[131]  D. Carroll,et al.  Fiber-based architectures for organic photovoltaics , 2007 .

[132]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[133]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[134]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[135]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[136]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[137]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .