Mineral assemblages and temperature associated with Cu enrichment in the Seival area (Neoproterozoic Camaquã Basin of Southern Brazil)

[1]  L. Nardi,et al.  Mass balance and origin of fluids associated to smectite and chlorite/smectite alteration in Seival Mine Cu–Mineralization – Camaquã Basin – Brazil (Part II) , 2019, Journal of Geochemical Exploration.

[2]  R. Philipp,et al.  Au Cu Ag mineralization controlled by brittle structures in Lavras do Sul Mining District and Seival Mine deposits, Camaquã Basin, southern Brazil , 2018, Journal of South American Earth Sciences.

[3]  L. Nardi,et al.  Hydrothermal alteration of volcanic rocks in Seival Mine Cu–mineralization – Camaquã Basin – Brazil (part I): Chloritization process and geochemical dispersion in alteration halos , 2017 .

[4]  M. Basei,et al.  Post-collisional Ediacaran volcanism in oriental Ramada Plateau, southern Brazil , 2016 .

[5]  T. Yoneda,et al.  Mineralogical aspects of interstratified chlorite-smectite associated with epithermal ore veins: A case study of the Todoroki Au-Ag ore deposit, Japan , 2016, Clay Minerals.

[6]  Farid Chemale,et al.  Evolução tectônica do Cinturão Dom Feliciano no Sul do Brasil: relações geológicas e geocronologia U-Pb , 2016 .

[7]  F. Ferreira,et al.  Alojamento do granito Lavras e a mineralização aurífera durante evolução de centro vulcano-plutônico pós-colisional, oeste do Escudo Sul-riograndense: dados geofísicos e estruturais , 2015 .

[8]  M. Cathelineau,et al.  Low-temperature chlorite geothermometry: a graphical representation based on a T–R2+–Si diagram , 2015 .

[9]  J. Gemmell,et al.  The chlorite proximitor: A new tool for detecting porphyry ore deposits , 2015 .

[10]  N. Cook,et al.  Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia , 2014 .

[11]  N. Evans,et al.  Abiogenic Fischer–Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China , 2014 .

[12]  J. Laux,et al.  Isotopic fluid changes in a Neoproterozoic porphyry–epithermal system: The Uruguay mine, southern Brazil , 2014 .

[13]  R. Philipp,et al.  U–Pb and Lu–Hf isotopes applied to the evolution of the late to post-orogenic transtensional basins of the dom feliciano belt, Brazil , 2014 .

[14]  Eduardo Fontana,et al.  Caracterização petrográfica e geoquímica da sequência magmática da Mina do Seival, Formação Hilário (Bacia do Camaquã – Neoproterozoico), Rio Grande do Sul, Brasil , 2014 .

[15]  M. Barton Iron Oxide(–Cu–Au–REE–P–Ag–U–Co) Systems , 2014 .

[16]  R. Armstrong,et al.  Tectonic evolution and provenance of the Santa Bárbara Group, Camaquã Mines region, Rio Grande do Sul, Brazil , 2013 .

[17]  A. Hofmann,et al.  Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India , 2012 .

[18]  E. Dantas,et al.  Ages (U–Pb SHRIMP and LA ICPMS) and stratigraphic evolution of the Neoproterozoic volcano-sedimentary successions from the extensional Camaquã Basin, Southern Brazil , 2012 .

[19]  F. Chemale,et al.  Late to Post-Orogenic Brasiliano-Pan-African Volcano-Sedimentary Basins in the Dom Feliciano Belt, Southernmost Brazil , 2012 .

[20]  L. H. Ronchi,et al.  Evidence of Ediacaran glaciation in southernmost Brazil through magmatic to meteoric fluid circulation in the porphyry–epithermal Au–Cu deposits of Lavras do Sul , 2011 .

[21]  Guilherme Casarotto Troian A cloritização na Mina Uruguai, Minas do Camaquã, RS, Brasil , 2010 .

[22]  D. Groves,et al.  Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits , 2010 .

[23]  R. Sillitoe Porphyry Copper Systems , 2010 .

[24]  A. Putnis,et al.  The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments , 2010 .

[25]  A. Meunier,et al.  Application of chemical geothermometry to low-temperature trioctahedral chlorites , 2009 .

[26]  D. L. Saldanha,et al.  Petrologia e sucessão estratigráfica das rochas monzoníticas da associação shoshonítica de Lavras do Sul (RS) , 2009 .

[27]  F. Pirajno Hydrothermal Processes and Mineral Systems , 2008 .

[28]  A. Mizusaki,et al.  U–Pb zircon and 40Ar–39Ar K‐feldspar dating of syn‐sedimentary volcanism of the Neoproterozoic Maricá Formation: constraining the age of foreland basin inception and inversion in the Camaquã Basin of southern Brazil , 2008 .

[29]  R. D. de Almeida,et al.  The continental record of Ediacaran volcano‐sedimentary successions in southern Brazil and their global implications , 2008 .

[30]  S. Devotta,et al.  Chemical Composition of Major Ions in Rainwater , 2008, Bulletin of environmental contamination and toxicology.

[31]  Geordie Mark,et al.  Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I , 2007 .

[32]  H.,et al.  Overview of the Yerington Porphyry Copper District: Magmatic to Nonmagmatic Sources of Hydrothermal Fluids, Their Flow Paths, Alteration Affects on Rocks, and Cu-Mo-Fe-Au Ores , 2007 .

[33]  G. Ruffet,et al.  Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées) , 2007 .

[34]  B. Kamber,et al.  The behaviour of the rare earth elements during estuarine mixing-revisited , 2006 .

[35]  W. Seifert,et al.  Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2 , 2006 .

[36]  J. Lafon,et al.  REINTERPRETAÇÃO DO COMPLEXO INTRUSIVO LAVRAS DO SUL, RS, DE ACORDO COM OS SISTEMAS VULCANO-PLUTÔNICOS DE SUBSIDÊNCIA. PARTE 1: GEOLOGIA, GEOFÍSICA E GEOCRONOLOGIA (207PB/206PB/238U) , 2006 .

[37]  Geordie Mark,et al.  Insights into the genesis and diversity of epigenetic Cu – Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland , 2006 .

[38]  J. Frantz,et al.  Geochemical modeling of gold precipitation conditions in the Bloco do Butiá Mine, Lavras do Sul/Brazil. , 2005, Anais da Academia Brasileira de Ciencias.

[39]  L. Hartmann,et al.  Sm-Nd isotopic investigation of Neoproterozoic and Cretaceous igneous rocks from southern Brazil: A study of magmatic processes , 2005 .

[40]  J. Boles,et al.  AN EMPIRICALLY DERIVED KINETIC MODEL FOR ALBITIZATION OF DETRITAL PLAGIOCLASE , 2005 .

[41]  L. Hartmann,et al.  Sm-Nd isotopic compositions as a proxy for magmatic processes during the Neoproterozoic of the southern Brazilian shield , 2005 .

[42]  J. Teixeira,et al.  Ore genesis at the Camaquã copper mine, a neoproterozoic sediment-hosted deposit in Southern Brazil , 2005 .

[43]  A. Figueiredo,et al.  Potassic and low- and high-Ti mildly alkaline volcanism in the Neoproterozoic Ramada Plateau, southernmost Brazil , 2005 .

[44]  Luiz Carlos da Silva,et al.  The neoproterozoic Mantiqueira Province and its African connections: a zircon-based U-Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens , 2005 .

[45]  M. Barton,et al.  Porphyry deposits; characteristics and origin of hypogene features , 2005 .

[46]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[47]  J. Richards Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .

[48]  R. Sillitoe Iron oxide-copper-gold deposits: an Andean view , 2003 .

[49]  C. Manning,et al.  The Substitution of Al and F in Titanite at High Pressure and Temperature: Experimental Constraints on Phase Relations and Solid Solution Properties , 2002 .

[50]  F. Worrall,et al.  Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns , 2001 .

[51]  D. Groves,et al.  Distal Magmatic-Hydrothermal Origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn (Cu-Ag) Deposits, Southern Brazil , 2000 .

[52]  David A. Johnson ALTERNATIVE BRINE SOURCES FOR Fe-OXIDE(-Cu-Au) SYSTEMS: IMPLICATIONS FOR HYDROTHERMAL ALTERATION AND METALS , 2000 .

[53]  R. Large,et al.  Proterozoic copper-gold deposits , 1998 .

[54]  E. Lima,et al.  The Lavras do Sul Shoshonitic Association: implications for the origin and evolution of Neoproterozoic shoshonitic magmatism in southernmost Brazil , 1998 .

[55]  M. Einaudi,et al.  40 Ar/ 39 Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile , 1997 .

[56]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[57]  E. Stolper,et al.  An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part I: Calibration and Solubility Models , 1995 .

[58]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[59]  W. McDonough,et al.  The composition of the Earth , 1995 .

[60]  David L. Parkhurst,et al.  USER'S GUIDE TO PHREEQC A COMPUTER PROGRAM FOR SPECIATION, REACTION-PATH, ADVECTIVE-TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS , 1995 .

[61]  Kazuhiro Suzuki,et al.  Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence , 1993 .

[62]  J. Dilles,et al.  Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction , 1992 .

[63]  André Sampaio Mexias,et al.  O sistema hidrotermal fossil de Volta Grande, Lavras do Sul/RS : parte II - geoquimica das cloritas , 1992 .

[64]  A. Tommasi,et al.  Deformation patterns in the southern Brazilian branch of the Dom Feliciano Belt: A reappraisal , 1992 .

[65]  R. Sillitoe Gold metallogeny of Chile; an introduction , 1991 .

[66]  A. Wiewióra Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: I. The mica group , 1990, Clay Minerals.

[67]  A. Meunier,et al.  Composition and crystallization of corrensite in volcanic and pyroclastic rocks of Hilario Formation (RS) Brazil , 1990 .

[68]  D. L. Anderson Composition of the Earth , 1989, Science.

[69]  C. Whitney Clay minerals—A physico-chemical explanation of their occurrence , 1987 .

[70]  R. B. Carten Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit , 1986 .

[71]  J. E. Jenkins,et al.  AN EXPERIMENTAL INVESTIGATION OF THE ALBITIZATION OF PLAGIOCLASE , 1985 .

[72]  F. Spear,et al.  Aluminous titanite (sphene) from the Eclogite Zone, south-central Tauern Window, Austria , 1985 .

[73]  H. Nagata,et al.  Conversion of Trioctahedral Smectite to Interstratified Chlorite/Smectite in Pliocene Acidic Pyroclastic Sediments of the Ohyu District, Akita Prefecture, Japan , 1984 .

[74]  B. HrccrNs The crystal chemistry and space groups of natural and synthetic titanites , 1976 .

[75]  P. Bayliss Nomenclature of the trioctahedral chlorites , 1975 .

[76]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .