Mineral assemblages and temperature associated with Cu enrichment in the Seival area (Neoproterozoic Camaquã Basin of Southern Brazil)
暂无分享,去创建一个
L. Nardi | A. Barats | C. Renac | A. Mexias | M.E.B. Gomes | R. W. Lopes | E. Fontana | Rodrigo W. Lopes
[1] L. Nardi,et al. Mass balance and origin of fluids associated to smectite and chlorite/smectite alteration in Seival Mine Cu–Mineralization – Camaquã Basin – Brazil (Part II) , 2019, Journal of Geochemical Exploration.
[2] R. Philipp,et al. Au Cu Ag mineralization controlled by brittle structures in Lavras do Sul Mining District and Seival Mine deposits, Camaquã Basin, southern Brazil , 2018, Journal of South American Earth Sciences.
[3] L. Nardi,et al. Hydrothermal alteration of volcanic rocks in Seival Mine Cu–mineralization – Camaquã Basin – Brazil (part I): Chloritization process and geochemical dispersion in alteration halos , 2017 .
[4] M. Basei,et al. Post-collisional Ediacaran volcanism in oriental Ramada Plateau, southern Brazil , 2016 .
[5] T. Yoneda,et al. Mineralogical aspects of interstratified chlorite-smectite associated with epithermal ore veins: A case study of the Todoroki Au-Ag ore deposit, Japan , 2016, Clay Minerals.
[6] Farid Chemale,et al. Evolução tectônica do Cinturão Dom Feliciano no Sul do Brasil: relações geológicas e geocronologia U-Pb , 2016 .
[7] F. Ferreira,et al. Alojamento do granito Lavras e a mineralização aurífera durante evolução de centro vulcano-plutônico pós-colisional, oeste do Escudo Sul-riograndense: dados geofísicos e estruturais , 2015 .
[8] M. Cathelineau,et al. Low-temperature chlorite geothermometry: a graphical representation based on a T–R2+–Si diagram , 2015 .
[9] J. Gemmell,et al. The chlorite proximitor: A new tool for detecting porphyry ore deposits , 2015 .
[10] N. Cook,et al. Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia , 2014 .
[11] N. Evans,et al. Abiogenic Fischer–Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China , 2014 .
[12] J. Laux,et al. Isotopic fluid changes in a Neoproterozoic porphyry–epithermal system: The Uruguay mine, southern Brazil , 2014 .
[13] R. Philipp,et al. U–Pb and Lu–Hf isotopes applied to the evolution of the late to post-orogenic transtensional basins of the dom feliciano belt, Brazil , 2014 .
[14] Eduardo Fontana,et al. Caracterização petrográfica e geoquímica da sequência magmática da Mina do Seival, Formação Hilário (Bacia do Camaquã – Neoproterozoico), Rio Grande do Sul, Brasil , 2014 .
[15] M. Barton. Iron Oxide(–Cu–Au–REE–P–Ag–U–Co) Systems , 2014 .
[16] R. Armstrong,et al. Tectonic evolution and provenance of the Santa Bárbara Group, Camaquã Mines region, Rio Grande do Sul, Brazil , 2013 .
[17] A. Hofmann,et al. Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India , 2012 .
[18] E. Dantas,et al. Ages (U–Pb SHRIMP and LA ICPMS) and stratigraphic evolution of the Neoproterozoic volcano-sedimentary successions from the extensional Camaquã Basin, Southern Brazil , 2012 .
[19] F. Chemale,et al. Late to Post-Orogenic Brasiliano-Pan-African Volcano-Sedimentary Basins in the Dom Feliciano Belt, Southernmost Brazil , 2012 .
[20] L. H. Ronchi,et al. Evidence of Ediacaran glaciation in southernmost Brazil through magmatic to meteoric fluid circulation in the porphyry–epithermal Au–Cu deposits of Lavras do Sul , 2011 .
[21] Guilherme Casarotto Troian. A cloritização na Mina Uruguai, Minas do Camaquã, RS, Brasil , 2010 .
[22] D. Groves,et al. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits , 2010 .
[23] R. Sillitoe. Porphyry Copper Systems , 2010 .
[24] A. Putnis,et al. The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments , 2010 .
[25] A. Meunier,et al. Application of chemical geothermometry to low-temperature trioctahedral chlorites , 2009 .
[26] D. L. Saldanha,et al. Petrologia e sucessão estratigráfica das rochas monzoníticas da associação shoshonítica de Lavras do Sul (RS) , 2009 .
[27] F. Pirajno. Hydrothermal Processes and Mineral Systems , 2008 .
[28] A. Mizusaki,et al. U–Pb zircon and 40Ar–39Ar K‐feldspar dating of syn‐sedimentary volcanism of the Neoproterozoic Maricá Formation: constraining the age of foreland basin inception and inversion in the Camaquã Basin of southern Brazil , 2008 .
[29] R. D. de Almeida,et al. The continental record of Ediacaran volcano‐sedimentary successions in southern Brazil and their global implications , 2008 .
[30] S. Devotta,et al. Chemical Composition of Major Ions in Rainwater , 2008, Bulletin of environmental contamination and toxicology.
[31] Geordie Mark,et al. Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I , 2007 .
[32] H.,et al. Overview of the Yerington Porphyry Copper District: Magmatic to Nonmagmatic Sources of Hydrothermal Fluids, Their Flow Paths, Alteration Affects on Rocks, and Cu-Mo-Fe-Au Ores , 2007 .
[33] G. Ruffet,et al. Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées) , 2007 .
[34] B. Kamber,et al. The behaviour of the rare earth elements during estuarine mixing-revisited , 2006 .
[35] W. Seifert,et al. Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2 , 2006 .
[36] J. Lafon,et al. REINTERPRETAÇÃO DO COMPLEXO INTRUSIVO LAVRAS DO SUL, RS, DE ACORDO COM OS SISTEMAS VULCANO-PLUTÔNICOS DE SUBSIDÊNCIA. PARTE 1: GEOLOGIA, GEOFÍSICA E GEOCRONOLOGIA (207PB/206PB/238U) , 2006 .
[37] Geordie Mark,et al. Insights into the genesis and diversity of epigenetic Cu – Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland , 2006 .
[38] J. Frantz,et al. Geochemical modeling of gold precipitation conditions in the Bloco do Butiá Mine, Lavras do Sul/Brazil. , 2005, Anais da Academia Brasileira de Ciencias.
[39] L. Hartmann,et al. Sm-Nd isotopic investigation of Neoproterozoic and Cretaceous igneous rocks from southern Brazil: A study of magmatic processes , 2005 .
[40] J. Boles,et al. AN EMPIRICALLY DERIVED KINETIC MODEL FOR ALBITIZATION OF DETRITAL PLAGIOCLASE , 2005 .
[41] L. Hartmann,et al. Sm-Nd isotopic compositions as a proxy for magmatic processes during the Neoproterozoic of the southern Brazilian shield , 2005 .
[42] J. Teixeira,et al. Ore genesis at the Camaquã copper mine, a neoproterozoic sediment-hosted deposit in Southern Brazil , 2005 .
[43] A. Figueiredo,et al. Potassic and low- and high-Ti mildly alkaline volcanism in the Neoproterozoic Ramada Plateau, southernmost Brazil , 2005 .
[44] Luiz Carlos da Silva,et al. The neoproterozoic Mantiqueira Province and its African connections: a zircon-based U-Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens , 2005 .
[45] M. Barton,et al. Porphyry deposits; characteristics and origin of hypogene features , 2005 .
[46] M. Barton,et al. Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .
[47] J. Richards. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .
[48] R. Sillitoe. Iron oxide-copper-gold deposits: an Andean view , 2003 .
[49] C. Manning,et al. The Substitution of Al and F in Titanite at High Pressure and Temperature: Experimental Constraints on Phase Relations and Solid Solution Properties , 2002 .
[50] F. Worrall,et al. Water-rock interaction in an acidic mine discharge as indicated by rare earth element patterns , 2001 .
[51] D. Groves,et al. Distal Magmatic-Hydrothermal Origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn (Cu-Ag) Deposits, Southern Brazil , 2000 .
[52] David A. Johnson. ALTERNATIVE BRINE SOURCES FOR Fe-OXIDE(-Cu-Au) SYSTEMS: IMPLICATIONS FOR HYDROTHERMAL ALTERATION AND METALS , 2000 .
[53] R. Large,et al. Proterozoic copper-gold deposits , 1998 .
[54] E. Lima,et al. The Lavras do Sul Shoshonitic Association: implications for the origin and evolution of Neoproterozoic shoshonitic magmatism in southernmost Brazil , 1998 .
[55] M. Einaudi,et al. 40 Ar/ 39 Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile , 1997 .
[56] M. Barton,et al. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .
[57] E. Stolper,et al. An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part I: Calibration and Solubility Models , 1995 .
[58] Mark S. Ghiorso,et al. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .
[59] W. McDonough,et al. The composition of the Earth , 1995 .
[60] David L. Parkhurst,et al. USER'S GUIDE TO PHREEQC A COMPUTER PROGRAM FOR SPECIATION, REACTION-PATH, ADVECTIVE-TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS , 1995 .
[61] Kazuhiro Suzuki,et al. Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence , 1993 .
[62] J. Dilles,et al. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction , 1992 .
[63] André Sampaio Mexias,et al. O sistema hidrotermal fossil de Volta Grande, Lavras do Sul/RS : parte II - geoquimica das cloritas , 1992 .
[64] A. Tommasi,et al. Deformation patterns in the southern Brazilian branch of the Dom Feliciano Belt: A reappraisal , 1992 .
[65] R. Sillitoe. Gold metallogeny of Chile; an introduction , 1991 .
[66] A. Wiewióra. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: I. The mica group , 1990, Clay Minerals.
[67] A. Meunier,et al. Composition and crystallization of corrensite in volcanic and pyroclastic rocks of Hilario Formation (RS) Brazil , 1990 .
[68] D. L. Anderson. Composition of the Earth , 1989, Science.
[69] C. Whitney. Clay minerals—A physico-chemical explanation of their occurrence , 1987 .
[70] R. B. Carten. Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit , 1986 .
[71] J. E. Jenkins,et al. AN EXPERIMENTAL INVESTIGATION OF THE ALBITIZATION OF PLAGIOCLASE , 1985 .
[72] F. Spear,et al. Aluminous titanite (sphene) from the Eclogite Zone, south-central Tauern Window, Austria , 1985 .
[73] H. Nagata,et al. Conversion of Trioctahedral Smectite to Interstratified Chlorite/Smectite in Pliocene Acidic Pyroclastic Sediments of the Ohyu District, Akita Prefecture, Japan , 1984 .
[74] B. HrccrNs. The crystal chemistry and space groups of natural and synthetic titanites , 1976 .
[75] P. Bayliss. Nomenclature of the trioctahedral chlorites , 1975 .
[76] H. Barnes,et al. Geochemistry of Hydrothermal Ore Deposits , 1968 .