Exciton localization on basal stacking faults in a-plane epitaxial lateral overgrown GaN grown by hydride vapor phase epitaxy

We present a detailed study of the luminescence at 3.42 eV usually observed in a-plane epitaxial lateral overgrowth (ELO) GaN grown by hydride vapor phase epitaxy on r-plane sapphire. This band is related to radiative recombination of excitons in a commonly encountered extended defect of a-plane GaN: I1 basal stacking fault. Cathodoluminescence measurements show that these stacking faults are essentially located in the windows and the N-face wings of the ELO-GaN and that they can appear isolated as well as organized into bundles. Time-integrated and time-resolved photoluminescence, supported by a qualitative model, evidence not only the efficient trapping of free excitons (FXs) by basal plane stacking faults but also some localization inside I1 stacking faults themselves. Measurements at room temperature show that FXs recombine efficiently with rather long luminescence decay times (360 ps), comparable to those encountered in high-quality GaN epilayers. We discuss the possible role of I1 stacking faults in...

[1]  N. Grandjean,et al.  a-plane GaN grown on r-plane sapphire substrates by hydride vapor phase epitaxy , 2007 .

[2]  M. Guzzi,et al.  CATHODOLUMINESCENCE AND TRANSMISSION ELECTRON MICROSCOPY STUDY OF THE INFLUENCE OF CRYSTAL DEFECTS ON OPTICAL TRANSITIONS IN GAN , 1999 .

[3]  C. Q. Chen,et al.  Luminescence from stacking faults in gallium nitride , 2005 .

[4]  J. Shah,et al.  Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies , 1984 .

[5]  S. Denbaars,et al.  Improved quality (112¯0)a-plane GaN with sidewall lateral epitaxial overgrowth , 2006 .

[6]  Manfred Albrecht,et al.  Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN , 1997 .

[7]  Pierre Lefebvre,et al.  Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. , 1998 .

[8]  Mathieu,et al.  Improved modeling of excitons in type-II semiconductor heterostructures by use of a three-dimensional variational function. , 1994, Physical review. B, Condensed matter.

[9]  Oliver Brandt,et al.  Optical properties of heavily doped G a N / ( A l , G a ) N multiple quantum wells grown on 6 H − S i C ( 0001 ) by reactive molecular-beam epitaxy , 2000 .

[10]  M. Kneissl,et al.  A-plane GaN epitaxial lateral overgrowth structures: Growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy , 2008 .

[11]  U. Zeimer,et al.  Near band edge and defect emissions from epitaxial lateral overgrown a-plane GaN with different stripe orientations , 2008 .

[12]  B. Deveaud,et al.  High spatial resolution picosecond cathodoluminescence of InGaN quantum wells , 2006 .

[13]  J. Bergman,et al.  Structural defect-related emissions in nonpolar a-plane GaN , 2006 .

[14]  Michael Schmidt,et al.  On the nature of the 3.41 eV luminescence in hexagonal GaN , 1998 .

[15]  Mathieu Leroux,et al.  Cathodoluminescence spectroscopy of epitaxial-lateral-overgrown nonpolar (11-20) and semipolar (11-22) GaN in relation to microstructural characterization , 2007 .

[16]  N. Grandjean,et al.  High quality thin GaN templates grown by hydride vapor phase epitaxy on sapphire substrates , 2006 .

[17]  Detlef Hommel,et al.  Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition , 2005 .

[18]  S. Denbaars,et al.  Optical evidence for lack of polarization in (112¯0) oriented GaN∕(AlGa)N quantum structures , 2005 .

[19]  Necmi Biyikli,et al.  Defect reduction in (112¯0) a-plane GaN by two- stage epitaxial lateral overgrowth , 2006 .

[20]  J. Massies,et al.  Observation and modeling of the time-dependent descreening of internal electric field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation , 2004 .

[21]  Chris G. Van de Walle,et al.  ENERGETICS AND ELECTRONIC STRUCTURE OF STACKING FAULTS IN ALN, GAN, AND INN , 1998 .

[22]  Shuji Nakamura,et al.  Time-resolved photoluminescence spectroscopy in GaN-based semiconductors with micron spatial resolution , 2000 .

[23]  J. Cunningham,et al.  Optical properties of strained antimonide-based heterostructures , 2003 .

[24]  J. Massies,et al.  Barrier-width dependence of group-III nitrides quantum-well transition energies , 1999 .

[25]  Masashi Kubota,et al.  Optical properties of nearly stacking-fault-free m-plane GaN homoepitaxial films grown by metal organic vapor phase epitaxy on low defect density freestanding GaN substrates , 2008 .

[26]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[27]  T. Y. Liu,et al.  Impact of nucleation conditions on the structural and optical properties of M-plane GaN(11̄00) grown on γ-LiAlO2 , 2002 .

[28]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[29]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .