CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling

Communication between cell surface proteins and the nucleus is integral to many cellular adaptations. In the case of ion channels in excitable cells, the dynamics of signaling to the nucleus are particularly important because the natural stimulus, surface membrane depolarization, is rapidly pulsatile. To better understand excitation–transcription coupling we characterized the dependence of cAMP response element–binding protein phosphorylation, a critical step in neuronal plasticity, on the level and duration of membrane depolarization. We find that signaling strength is steeply dependent on depolarization, with sensitivity far greater than hitherto recognized. In contrast, graded blockade of the Ca2+ channel pore has a remarkably mild effect, although some Ca2+ entry is absolutely required. Our data indicate that Ca2+/CaM-dependent protein kinase II acting near the channel couples local Ca2+ rises to signal transduction, encoding the frequency of Ca2+ channel openings rather than integrated Ca2+ flux—a form of digital logic.

[1]  Donald M Bers,et al.  Voltage Dependence of Cardiac Excitation–Contraction Coupling: Unitary Ca2+ Current Amplitude and Open Channel Probability , 2007, Circulation research.

[2]  R. Mains,et al.  PRIMARY CULTURES OF DISSOCIATED SYMPATHETIC NEURONS , 1973, The Journal of cell biology.

[3]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[4]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[5]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[6]  Hilmar Bading,et al.  Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity , 2001, Nature Neuroscience.

[7]  Karl Deisseroth,et al.  Signaling from synapse to nucleus: the logic behind the mechanisms , 2003, Current Opinion in Neurobiology.

[8]  C W Balke,et al.  Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. , 1995, Science.

[9]  D. Katz,et al.  Physiological Patterns of Electrical Stimulation Can Induce Neuronal Gene Expression by Activating N-Type Calcium Channels , 2001, The Journal of Neuroscience.

[10]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[11]  A. Davies,et al.  Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor , 2008, Nature Neuroscience.

[12]  G. Obermair,et al.  Molecular Nature of Anomalous L-Type Calcium Channels in Mouse Cerebellar Granule Cells , 2007, The Journal of Neuroscience.

[13]  W. Lederer,et al.  Local Ca2+ Signaling and EC Coupling in Heart: Ca2+ Sparks and the Regulation of the [Ca2+]i Transient , 2002 .

[14]  H. Schulman,et al.  Neuronal Ca2+/calmodulin-dependent protein kinases. , 1992, Annual review of biochemistry.

[15]  James Kim,et al.  CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation , 2005, The Journal of cell biology.

[16]  R. Tsien,et al.  Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore , 1986, The Journal of general physiology.

[17]  M. Wiznerowicz,et al.  Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-Inducible RNA Interference , 2003, Journal of Virology.

[18]  P. Mermelstein,et al.  Interactions with PDZ Proteins Are Required for L-Type Calcium Channels to Activate cAMP Response Element-Binding Protein-Dependent Gene Expression , 2003, The Journal of Neuroscience.

[19]  W. Almers,et al.  Gating currents and charge movements in excitable membranes. , 1978, Reviews of physiology, biochemistry and pharmacology.

[20]  K. Beam,et al.  Functional and structural approaches to the study of excitation-contraction coupling. , 1997, Methods in cell biology.

[21]  N. Klugbauer,et al.  Calmodulin Kinase II Is Involved in Voltage-dependent Facilitation of the L-type Cav1.2 Calcium Channel , 2006, Journal of Biological Chemistry.

[22]  K. Fukunaga,et al.  Prominent expression and activity‐dependent nuclear translocation of Ca2+/calmodulin‐dependent protein kinase Iδ in hippocampal neurons , 2005, The European journal of neuroscience.

[23]  A. Fox,et al.  Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaff in cells , 1992, Nature.

[24]  A. Hodgkin,et al.  Potassium contractures in single muscle fibres , 1960, The Journal of physiology.

[25]  E. Kavalali,et al.  Selective potentiation of a novel calcium channel in rat hippocampal neurones. , 1994, The Journal of physiology.

[26]  W. Chandler,et al.  Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction Coupling , 1973, Nature.

[27]  S. J. Smith,et al.  Facilitation of Ca2+-channel currents in bovine adrenal chromaffin cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Hawrot,et al.  Long-term culture of dissociated sympathetic neurons. , 1979, Methods in enzymology.

[29]  Weifeng Xu,et al.  Neuronal CaV1.3α1 L-Type Channels Activate at Relatively Hyperpolarized Membrane Potentials and Are Incompletely Inhibited by Dihydropyridines , 2001, The Journal of Neuroscience.

[30]  T. Murphy,et al.  L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes , 1991, Neuron.

[31]  James I. Morgan,et al.  Role of ion flux in the control of c-fos expression , 1986, Nature.

[32]  W. Regehr,et al.  Calcium control of transmitter release at a cerebellar synapse , 1995, Neuron.

[33]  F. Bezanilla,et al.  Twitches in the presence of ethylene glycol bis( -aminoethyl ether)-N,N'-tetracetic acid. , 1972, Biochimica et biophysica acta.

[34]  Liwang Liu,et al.  Ca2+ influx through both L‐ and N‐type Ca2+ channels increases c‐fos expression by electrical stimulation of sympathetic neurons , 2007, The European journal of neuroscience.

[35]  W Yuan,et al.  Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. , 1994, The American journal of physiology.

[36]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[37]  R. Chapman,et al.  The tension‐depolarization relationship of frog atrial trabeculae as determined by potassium contractures. , 1981, The Journal of physiology.

[38]  E. Lakatta,et al.  Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Lawrence M. Lifshitz,et al.  Dihydropyridine Receptors and Type 1 Ryanodine Receptors Constitute the Molecular Machinery for Voltage-Induced Ca2+ Release in Nerve Terminals , 2006, The Journal of Neuroscience.

[40]  R. Tsien,et al.  Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions , 1995, Neuron.

[41]  Y. Mori,et al.  Functional characterization of ion permeation pathway in the N-type Ca2+ channel. , 1998, Journal of neurophysiology.

[42]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[43]  H. Hidaka,et al.  Ca2+/calmodulin-dependent protein kinase kinase cascade. , 1994, Biochemical and biophysical research communications.

[44]  K. Deisseroth,et al.  Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation during Multiple Forms of Hippocampal Synaptic Plasticity , 1996, Neuron.

[45]  R. Eckert,et al.  Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. , 1984, Biophysical journal.

[46]  Bertil Hille,et al.  Modulation of ion-channel function by G-protein-coupled receptors , 1994, Trends in Neurosciences.

[47]  W. Lederer,et al.  Local Ca(2+) signaling and EC coupling in heart: Ca(2+) sparks and the regulation of the [Ca(2+)](i) transient. , 2002, Journal of molecular and cellular cardiology.

[48]  Analysis of functional signaling domains from fluorescence imaging and the two-dimensional continuous wavelet transform. , 2007, Biophysical journal.

[49]  M. Blaustein,et al.  Plasma Membrane-Cytoskeleton-Endoplasmic Reticulum Complexes in Neurons and Astrocytes* , 2004, Journal of Biological Chemistry.

[50]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[51]  D. Ginty,et al.  Function and Regulation of CREB Family Transcription Factors in the Nervous System , 2002, Neuron.

[52]  H. Fujino,et al.  Calcium/calmodulin-dependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity , 2007, Brain Research.

[53]  R. Dolmetsch,et al.  Signaling to the Nucleus by an L-type Calcium Channel-Calmodulin Complex Through the MAP Kinase Pathway , 2001, Science.

[54]  E. Ríos,et al.  Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle , 1987, Nature.

[55]  R. Tsien,et al.  α- and βCaMKII Inverse Regulation by Neuronal Activity and Opposing Effects on Synaptic Strength , 2002, Neuron.

[56]  D. T. Yue,et al.  Functional Stoichiometry and Local Enrichment of Calmodulin Interacting with Ca2+ Channels , 2004, Science.

[57]  E. Cooper,et al.  Depolarization Strongly Induces Human Cytomegalovirus Major Immediate-Early Promoter/Enhancer Activity in Neurons* , 2001, The Journal of Biological Chemistry.

[58]  D. Surmeier,et al.  Association of CaV1.3 L-Type Calcium Channels with Shank , 2005, The Journal of Neuroscience.

[59]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[60]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[61]  S. J. Smith,et al.  Calcium entry and transmitter release at voltage‐clamped nerve terminals of squid. , 1985, The Journal of physiology.

[62]  D. Kunze,et al.  Characterization of the effects of a new Ca2+ channel activator, FPL 64176, in GH3 cells. , 1992, Molecular pharmacology.

[63]  M. Stern,et al.  Theory of excitation-contraction coupling in cardiac muscle. , 1992, Biophysical journal.

[64]  M. Greenberg,et al.  Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. , 1986, Science.

[65]  D. T. Yue,et al.  Preassociation of Calmodulin with Voltage-Gated Ca2+ Channels Revealed by FRET in Single Living Cells , 2001, Neuron.

[66]  Susumu Hagiwara,et al.  Surface Density of Calcium Ions and Calcium Spikes in the Barnacle Muscle Fiber Membrane , 1967, The Journal of general physiology.

[67]  Liwang Liu,et al.  The calcium channel ligand FPL 64176 enhances L-type but inhibits N-type neuronal calcium currents , 2003, Neuropharmacology.

[68]  G. Wilson,et al.  A voltage-driven switch for ion-independent signaling by ether-à-go-go K+ channels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Katz,et al.  A study of synaptic transmission in the absence of nerve impulses , 1967, The Journal of physiology.

[70]  A. Means,et al.  The calcium/calmodulin-dependent protein kinase cascades , 2007 .

[71]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[72]  R. Tsien,et al.  L-type calcium channel ligands block nicotine-induced signaling to CREB by inhibiting nicotinic receptors , 2006, Neuropharmacology.

[73]  R. Burgoyne,et al.  Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling , 2007, Nature Reviews Neuroscience.

[74]  R. Tsien,et al.  alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. , 2002, Neuron.

[75]  M. Henkart Identification and function of intracellular calcium stores in axons and cell bodies of neurons. , 1980, Federation proceedings.

[76]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.

[77]  Leonard K. Kaczmarek,et al.  Non-conducting functions of voltage-gated ion channels , 2006, Nature Reviews Neuroscience.

[78]  Geneviève Dupont,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. , 2003, Cell calcium.

[79]  R. Chow Cadmium block of squid calcium currents. Macroscopic data and a kinetic model , 1991, The Journal of general physiology.

[80]  Andy Hudmon,et al.  Molecular Basis of Calmodulin Tethering and Ca2+-dependent Inactivation of L-type Ca2+ Channels* , 2001, The Journal of Biological Chemistry.

[81]  M. F. Schneider Control of calcium release in functioning skeletal muscle fibers. , 1994, Annual review of physiology.

[82]  D. Potter,et al.  Studies on rat sympathetic neurons developing in cell culture. II. Synaptic mechanisms. , 1978, Developmental biology.

[83]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[84]  R. Dolmetsch Excitation-Transcription Coupling: Signaling by Ion Channels to the Nucleus , 2003, Science's STKE.

[85]  R. Tsien,et al.  Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. , 1988, Science.

[86]  D. Pietrobon,et al.  Novel mechanism of voltage-dependent gating in L-type calcium channels , 1990, Nature.

[87]  E. Mccleskey,et al.  Permeation and selectivity in calcium channels. , 2003, Annual review of physiology.

[88]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[89]  V. Shahrezaei,et al.  Ca2+ from One or Two Channels Controls Fusion of a Single Vesicle at the Frog Neuromuscular Junction , 2006, The Journal of Neuroscience.

[90]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[91]  W. Lederer,et al.  Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. , 1996, Circulation research.

[92]  D. Abernethy,et al.  Voltage-gated Mobility of the Ca2+ Channel Cytoplasmic Tails and Its Regulatory Role* , 2003, The Journal of Biological Chemistry.

[93]  Heping Cheng,et al.  Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses , 2001, Nature.

[94]  F. Protasi,et al.  Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. , 1997, Physiological reviews.

[95]  Eric C. Griffith,et al.  Regulation of transcription factors by neuronal activity , 2002, Nature Reviews Neuroscience.

[96]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[97]  K. Deisseroth,et al.  CREB Phosphorylation and Dephosphorylation: A Ca2+- and Stimulus Duration–Dependent Switch for Hippocampal Gene Expression , 1996, Cell.

[98]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[99]  T. Soderling The Ca-calmodulin-dependent protein kinase cascade. , 1999, Trends in biochemical sciences.

[100]  P. Saggau,et al.  Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  W. Lederer,et al.  The control of calcium release in heart muscle. , 1995, Science.

[102]  D. Potter,et al.  Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[103]  K. Deisseroth,et al.  Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons , 1998, Nature.

[104]  E. Nestler,et al.  The many faces of CREB , 2005, Trends in Neurosciences.

[105]  Donald M Bers,et al.  Calcium Signaling in Cardiac Ventricular Myocytes , 2005, Annals of the New York Academy of Sciences.

[106]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[107]  D. Lipscombe,et al.  The molecular identity of Ca channel alpha 1-subunits expressed in rat sympathetic neurons. , 1996, Journal of molecular neuroscience : MN.

[108]  D. A. Brown,et al.  Action of -aminobutyric acid (GABA) on rat sympathetic ganglion cells. , 1973, British journal of pharmacology.

[109]  Stanley R. Sternberg,et al.  Biomedical Image Processing , 1983, Computer.