Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP

Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top–down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.

Nuno Carvalhais | Klaus Zimmermann | Lisa Bock | François Massonnet | Bouwe Andela | Björn Brötz | Paul Earnshaw | Birgit Hassler | Axel Lauer | Lee de Mora | Valeriu Predoi | Manuel Schlund | Javier Vegas-Regidor | Ranjini Swaminathan | Nikolay V. Koldunov | Núria Pérez-Zanón | Alasdair Hunter | Carsten Ehbrecht | Nicola Cortesi | Stephan Kindermann | Benjamin Müller | Irene Cionni | Mattia Righi | Veronika Eyring | Enrico Arnone | Omar Bellprat | Louis-Philippe Caron | Bas Crezee | Edouard Davin | Paolo Davini | Kevin Debeire | Clara Deser | David Docquier | Bettina K. Gier | Nube Gonzalez-Reviriego | Paul J. Goodman | Stefan Hagemann | Steven C. Hardiman | Christopher Kadow | Sujan Koirala | Quentin Lejeune | Valerio Lembo | Tomas Lovato | Valerio Lucarini | Amarjiit Pandde | Adam S. Phillips | Joellen Russell | Alistair Sellar | Federico Serva | Tobias Stacke | Verónica Torralba | Jost von Hardenberg | Katja Weigel | C. Deser | A. Phillips | S. Hagemann | R. Swaminathan | V. Predoi | J. von Hardenberg | T. Stacke | P. Earnshaw | N. Cortesi | V. Torralba | N. González-Reviriego | E. Davin | N. Carvalhais | V. Eyring | I. Cionni | M. Righi | A. Lauer | S. Hardiman | A. Sellar | Sujan Koirala | K. Weigel | V. Lucarini | C. Kadow | C. Ehbrecht | S. Kindermann | T. Lovato | L. Caron | J. Russell | F. Massonnet | P. Davini | O. Bellprat | M. Schlund | Kevin Debeire | L. Bock | B. Andela | E. Arnone | Alasdair Hunter | N. Pérez-Zañón | Javier Vegas-Regidor | B. Hassler | V. Lembo | L. de Mora | D. Docquier | P. Goodman | F. Serva | Q. Lejeune | B. Crezee | Klaus Zimmermann | Benjamin Müller | Björn Brötz | Amarjiit Pandde | Nikolay Koldunov | Manuel Schlund

[1]  S. Seneviratne,et al.  Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing , 2020, Earth System Dynamics.

[2]  P. Cox,et al.  Emergent constraints on climate‐carbon cycle feedbacks in the CMIP5 Earth system models , 2014 .

[3]  Young‐Oh Kwon,et al.  Estimation of the SST Response to Anthropogenic and External Forcing and Its Impact on the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation , 2017 .

[4]  T. Fichefet,et al.  Arctic sea-ice change tied to its mean state through thermodynamic processes , 2018, Nature Climate Change.

[5]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[6]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[7]  R. Betts,et al.  Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative , 2015 .

[8]  Tsengdar J. Lee,et al.  Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6 , 2019, Geoscientific Model Development.

[9]  Andi Walther,et al.  The Pathfinder Atmospheres–Extended AVHRR Climate Dataset , 2014 .

[10]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[11]  M. Maqueda,et al.  Water properties and circulation in Arctic Ocean models , 2007 .

[12]  S. Dhomse,et al.  Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models , 2010 .

[13]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[14]  F. Qiao,et al.  Wave‐induced mixing in the upper ocean: Distribution and application to a global ocean circulation model , 2004 .

[15]  Pierre Friedlingstein,et al.  Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models , 2015 .

[16]  Maurizio Santoro,et al.  Global covariation of carbon turnover times with climate in terrestrial ecosystems , 2014, Nature.

[17]  B. Anderson,et al.  ROBUST IDENTIFICATION OF , 2005 .

[18]  C. Deser,et al.  Projecting North American Climate over the Next 50 Years: Uncertainty due to Internal Variability* , 2014 .

[19]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  Amy H. Butler,et al.  On the lack of stratospheric dynamical variability in low‐top versions of the CMIP5 models , 2013 .

[21]  Ivar A. Seierstad,et al.  The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections , 2012 .

[22]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[23]  R. Kwok Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018) , 2018, Environmental Research Letters.

[24]  Alessandro Anav,et al.  Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011 , 2013, Remote. Sens..

[25]  Alessandro Cescatti,et al.  A dataset mapping the potential biophysical effects of vegetation cover change , 2018, Scientific Data.

[26]  M. Heimann,et al.  Terrestrial ecosystem carbon dynamics and climate feedbacks , 2008, Nature.

[27]  A. Phillips,et al.  Tropical Atlantic Influence on European Heat Waves , 2005 .

[28]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[29]  M. Ikegami,et al.  New technique to analyse global distributions of CO2 concentrations and fluxes from non-processed observational data , 2010 .

[30]  Richard Goody,et al.  Sources and sinks of climate entropy , 2000 .

[31]  Christian Franzke,et al.  Low‐frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere , 2017 .

[32]  S. Kooijman Energy Budgets , 2019, Encyclopedia of Theoretical Ecology.

[33]  Klaus Wyser,et al.  EC-Earth V2.2: description and validation of a new seamless earth system prediction model , 2012, Climate Dynamics.

[34]  Elizabeth A. Barnes,et al.  Modeled and Observed Multidecadal Variability in the North Atlantic Jet Stream and Its Connection to Sea Surface Temperatures , 2018 .

[35]  T. Fichefet,et al.  Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations , 2019 .

[36]  E. Volodin,et al.  Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations , 2010 .

[37]  T. Reichler,et al.  How Well Do Coupled Models Simulate Today's Climate? , 2008 .

[38]  Fabio D'Andrea,et al.  Northern Hemisphere Atmospheric Blocking Representation in Global Climate Models: Twenty Years of Improvements? , 2016 .

[39]  K.,et al.  The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability , 2015 .

[40]  S. Kern,et al.  Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records , 2018, The Cryosphere.

[41]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[42]  F. Woodward,et al.  Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 , 2013, Proceedings of the National Academy of Sciences.

[43]  Veronika Eyring,et al.  A community diagnostic tool for chemistry climate model validation , 2012 .

[44]  A. Aghakouchak,et al.  Evaluation of CMIP5 continental precipitation simulations relative to satellite‐based gauge‐adjusted observations , 2014 .

[45]  G. Meehl,et al.  The Coupled Model Intercomparison Project (CMIP) , 2000 .

[46]  Sanjiv Kumar,et al.  Evaluation of Temperature and Precipitation Trends and Long-Term Persistence in CMIP5 Twentieth-Century Climate Simulations , 2013 .

[47]  D. A. Rothrock,et al.  Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates , 2003 .

[48]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[49]  T. Zhou,et al.  Chinese contribution to CMIP5: An overview of five Chinese models’ performances , 2014, Journal of Meteorological Research.

[50]  Peter A. Stott,et al.  Attribution of observed historical near‒surface temperature variations to anthropogenic and natural causes using CMIP5 simulations , 2013 .

[51]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[52]  T. Fichefet,et al.  Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations , 2020 .

[53]  A. Gassmann,et al.  How is local material entropy production represented in a numerical model? , 2015 .

[54]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[55]  D. Lawrence,et al.  Higher climatological temperature sensitivity of soil carbon in cold than warm climates , 2017 .

[56]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[57]  C. Deser,et al.  Communication of the role of natural variability in future North American climate , 2012 .

[58]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[59]  Natasha MacBean,et al.  Uncertainty in plant functional type distributions and its impact on land surface models , 2017 .

[60]  David W. J. Thompson,et al.  A critical comparison of stratosphere–troposphere coupling indices , 2009 .

[61]  Eric Guilyardi,et al.  Towards improved and more routine Earth system model evaluation in CMIP , 2016 .

[62]  K. Denman,et al.  Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases , 2011 .

[63]  P. Cox,et al.  Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models , 2013 .

[64]  Veronika Eyring,et al.  Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6) , 2015 .

[65]  B. Liepert,et al.  Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models , 2012 .

[66]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[67]  Craig M. Lee,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes , 2016 .

[68]  Martin Wild,et al.  Energy budgets and transports: global evolution and spatial patterns during the twentieth century as estimated in two AMIP-like experiments , 2017, Climate Dynamics.

[69]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[70]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[71]  Craig M. Lee,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater , 2016 .

[72]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[73]  Crystal B. Schaaf,et al.  Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data , 2005 .

[74]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[75]  Stefan Rahmstorf,et al.  A decade of weather extremes , 2012 .

[76]  William R. Wieder,et al.  Regridded Harmonized World Soil Database v1.2 , 2014 .

[77]  C. Bitz,et al.  Sea ice in Earth system models , 2016 .

[78]  Alessandro Cescatti,et al.  Biophysical climate impacts of recent changes in global forest cover , 2016, Science.

[79]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[80]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[81]  H. Eskes,et al.  Indicators of Antarctic ozone depletion , 2005 .

[82]  P. Cox,et al.  Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 , 2016, Nature.

[83]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[84]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[85]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[86]  Arthur H. Rosenfeld,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[87]  Diana Verseghy,et al.  The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of Physical Processes , 2013, Data, Models and Analysis.

[88]  P. Landschützer,et al.  Decadal variations and trends of the global ocean carbon sink , 2016 .

[89]  Christian H. Reick,et al.  Robust Identification of Local Biogeophysical Effects of Land-Cover Change in a Global Climate Model , 2017 .

[90]  C. Deser,et al.  Evaluating Modes of Variability in Climate Models , 2014 .

[91]  V. Eyring Validation of coupled chemistry-climate models , 2005 .

[92]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[93]  P. Davini,et al.  On the misinterpretation of the North Atlantic Oscillation in CMIP5 models , 2014, Climate Dynamics.

[94]  J. Norfolk,et al.  Primary Production of the Biosphere , 1976 .

[95]  M. Holland,et al.  Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations , 2012 .

[96]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[97]  S. Pfenninger,et al.  Balancing Europe’s wind power output through spatial deployment informed by weather regimes , 2017, Nature climate change.

[98]  Victor Brovkin,et al.  Determining robust impacts of land-use induced land-cover changes on surface climate over North America and Eurasia; Results from the first set of LUCID experiments , 2012 .

[99]  S. Riser,et al.  Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models , 2018 .

[100]  Clara Deser,et al.  Sea surface temperature variability: patterns and mechanisms. , 2010, Annual review of marine science.

[101]  Jana Sillmann,et al.  Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking , 2011 .

[102]  Dongxiao Zhang,et al.  Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations , 2013 .

[103]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[104]  Alexander Loew,et al.  Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations , 2013 .

[105]  Edward N. Lorenz,et al.  Available Potential Energy and the Maintenance of the General Circulation , 1955 .

[106]  Daniel R. Marsh,et al.  Climate change from 1850 to 2005 simulated in CESM1(WACCM) , 2013 .

[107]  Karen A. McKinnon,et al.  The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly? , 2017 .

[108]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[109]  Paolo Davini,et al.  Bidimensional Diagnostics, Variability, and Trends of Northern Hemisphere Blocking , 2012 .

[110]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[111]  John M. Wallace,et al.  North atlantic oscillatiodannular mode: Two paradigms—one phenomenon , 2000 .

[112]  Reconciling modeled and observed temperature trends over Antarctica , 2012 .

[113]  Julian Icarus Allen,et al.  How should sparse marine in situ measurements be compared to a continuous model: an example , 2013 .

[114]  Laura Ferranti,et al.  Flow‐dependent verification of the ECMWF ensemble over the Euro‐Atlantic sector , 2015 .

[115]  James W. Hurrell,et al.  North Atlantic climate variability: The role of the North Atlantic Oscillation , 2009 .

[116]  M. Reichstein,et al.  Apparent ecosystem carbon turnover time: uncertainties and robust features , 2020 .

[117]  Tongwen Wu A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations , 2012, Climate Dynamics.

[118]  Yangchun Li,et al.  The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2 , 2013, Advances in Atmospheric Sciences.

[119]  Michel Rixen,et al.  The CMIP6 Data Request (version 01.00.31) , 2019 .

[120]  Mark P. Baldwin,et al.  Stratospheric Harbingers of Anomalous Weather Regimes , 2001, Science.

[121]  Benjamin Müller,et al.  Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool , 2017 .

[122]  Arthur H. Rosenfeld,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[123]  Bettina K. Gier,et al.  Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP , 2020, Geoscientific Model Development.

[124]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[125]  E. Kowalczyk,et al.  The ACCESS coupled model: documentation of core CMIP5 simulations and initial results , 2013 .

[126]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[127]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[128]  Luca Cinquini,et al.  Requirements for a global data infrastructure in support of CMIP6 , 2018, Geoscientific Model Development.

[129]  D. Notz,et al.  Drivers of variability in Arctic sea-ice drift speed , 2014 .

[130]  J. Corte-Real,et al.  Global diagnostic energetics of five state-of-the-art climate models , 2011 .

[131]  F. Achard,et al.  Determination of tropical deforestation rates and related carbon losses from 1990 to 2010 , 2014, Global change biology.

[132]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[133]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[134]  K. Trenberth,et al.  The atmospheric energy budget and implications for surface fluxes and ocean heat transports , 2001 .

[135]  Valerio Lucarini,et al.  New Results on the Thermodynamic Properties of the Climate System , 2011 .

[136]  Martin Wild,et al.  The Earth radiation balance as driver of the global hydrological cycle , 2010 .

[137]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[138]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[139]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[140]  W. G. Strand,et al.  Climate System Response to External Forcings and Climate Change Projections in CCSM4 , 2012 .

[141]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[142]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[143]  M. Dameris,et al.  Global long-term monitoring of the ozone layer – a prerequisite for predictions , 2009 .

[144]  Ralph D. Lorenz,et al.  Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond , 2005 .

[145]  Michael Schulz,et al.  The Community Climate System Model (version 2.0.1) on the HLRN supercomputer: Adjustment, accelerated integration, and present-day control run , 2006 .

[146]  Veronika Eyring,et al.  A Strategy for Process-Oriented Validation of Coupled Chemistry- Climate Models , 2005 .

[147]  Duane E. Waliser,et al.  Satellite Observations for CMIP5: The Genesis of Obs4MIPs , 2014 .

[148]  Gordon B. Bonan,et al.  Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data , 2010 .

[149]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[150]  S. Jeffrey,et al.  Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations , 2012 .

[151]  R. Allan,et al.  Co‐variation of temperature and precipitation in CMIP5 models and satellite observations , 2012 .

[152]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[153]  N. Abraham,et al.  Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models , 2015 .

[154]  Corinne Le Quéré,et al.  Combined constraints on global ocean primary production using observations and models , 2013 .

[155]  C. Müller,et al.  Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study , 2009 .

[156]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[157]  François Massonnet,et al.  Quantifying climate feedbacks in polar regions , 2018, Nature Communications.

[158]  E. Davin,et al.  Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison , 2020 .

[159]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[160]  A. Alessandri,et al.  INGV-CMCC Carbon (ICC): A Carbon Cycle Earth System Model , 2009 .

[161]  L. Bengtsson,et al.  Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? , 2018, Climate Dynamics.

[162]  Pierre Friedlingstein,et al.  Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models , 2019, Biogeosciences.

[163]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[164]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[165]  Robert Vautard,et al.  Multiple Weather Regimes over the North Atlantic: Analysis of Precursors and Successors , 1990 .

[166]  Yi Y. Liu,et al.  Trend-preserving blending of passive and active microwave soil moisture retrievals , 2012 .

[167]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[168]  J. Gregory,et al.  Ocean Heat Uptake Processes: A Model Intercomparison , 2015 .

[169]  Julienne Stroeve,et al.  Changing state of Arctic sea ice across all seasons , 2018, Environmental Research Letters.

[170]  Kevin E. Trenberth,et al.  Atlantic hurricanes and natural variability in 2005 , 2006 .

[171]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[172]  Goran Georgievski,et al.  Characterizing uncertainties in the ESA-CCI land cover map of the epoch 2010 and their impacts on MPI-ESM climate simulations , 2018, Theoretical and Applied Climatology.

[173]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[174]  Michel Rixen,et al.  The CMIP6 Data Request (DREQ, version 01.00.31) , 2020, Geoscientific Model Development.

[175]  Toru Nozawa,et al.  MIROC4h—A New High-Resolution Atmosphere-Ocean Coupled General Circulation Model , 2012 .

[176]  Andrew J. Pitman,et al.  Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations , 2012 .

[177]  M. Ambaum,et al.  Thermal Physics of the Atmosphere , 2010 .

[178]  Ron Kwok,et al.  Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 , 2009 .

[179]  Daniel F. Rex,et al.  Blocking Action in the Middle Troposphere and its Effect upon Regional Climate I. An Aerological Study of Blocking Action. , 1950 .

[180]  T. H. Haar,et al.  Estimating the Meridional Energy Transports in the Atmosphere and Ocean , 1985 .

[181]  Valerio Lucarini,et al.  Entropy production and coarse graining of the climate fields in a general circulation model , 2013, Climate Dynamics.

[182]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[183]  Andrew Dawson,et al.  Simulating regime structures in weather and climate prediction models , 2012 .

[184]  Valerio Lucarini,et al.  TheDiaTo (v1.0) – a new diagnostic tool for water, energy and entropy budgets in climate models , 2019, Geoscientific Model Development.

[185]  D. Sheil,et al.  How Forests Attract Rain: An Examination of a New Hypothesis , 2009 .

[186]  Martin Jung,et al.  The FLUXCOM ensemble of global land-atmosphere energy fluxes , 2018, Scientific Data.

[187]  Uwe Ulbrich,et al.  The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses , 1991 .

[188]  Volker Grewe,et al.  Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past , 2006 .

[189]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[190]  Pierre Rampal,et al.  IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline , 2011 .

[191]  Gregory Duveiller,et al.  The mark of vegetation change on Earth’s surface energy balance , 2018, Nature Communications.

[192]  Brian J. Hoskins,et al.  Winter and Summer Northern Hemisphere Blocking in CMIP5 Models , 2013 .

[193]  Franco Molteni,et al.  On the operational predictability of blocking , 1990 .

[194]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[195]  T. Fichefet,et al.  Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6 , 2017 .

[196]  Axel Lauer,et al.  Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP , 2020, Geoscientific Model Development.

[197]  S. Kobayashi,et al.  The JRA-25 Reanalysis , 2007 .

[198]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[199]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[200]  D. Ellison,et al.  On the forest cover–water yield debate: from demand- to supply-side thinking , 2012, Global Change Biology.

[201]  S. Seneviratne,et al.  Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments , 2017 .

[202]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[203]  Valerio Lucarini,et al.  Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models , 2007 .

[204]  Maarten H. P. Ambaum,et al.  Thermal Physics of the Atmosphere: Ambaum/Thermal Physics of the Atmosphere , 2010 .

[205]  Klaus Zimmermann,et al.  Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview , 2020, Geoscientific Model Development.

[206]  R. Vautard,et al.  Weather Regimes: Recurrence and Quasi Stationarity , 1995 .

[207]  P. Yiou,et al.  Weather regime dependence of extreme value statistics for summer temperature and precipitation , 2008 .

[208]  P. Ruti,et al.  Northern Hemisphere winter midlatitude atmospheric variability in CMIP5 models , 2014 .

[209]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[210]  Bryan A. Baum,et al.  Clouds and the Earth's Radiant Energy System (CERES) , 1995 .

[211]  W. Collins,et al.  Evaluation of climate models , 2013 .

[212]  Bengamin I. Moat,et al.  Measuring the Atlantic Meridional Overturning Circulation at 26°N , 2015 .

[213]  Bettina K. Gier,et al.  Taking climate model evaluation to the next level , 2019, Nature Climate Change.

[214]  M. Holland,et al.  Constraining projections of summer Arctic sea ice , 2012 .

[215]  F. Qiao,et al.  Response of the equatorial basin‐wide SST to non‐breaking surface wave‐induced mixing in a climate model: An amendment to tropical bias , 2012 .

[216]  Valerio Lucarini,et al.  Mathematical and physical ideas for climate science , 2013, 1311.1190.

[217]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[218]  Bin Wang,et al.  The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 , 2013, Advances in Atmospheric Sciences.

[219]  D. Barriopedro,et al.  Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme , 2010 .

[220]  J. Marotzke,et al.  Internal variability in simulated and observed tropical tropospheric temperature trends , 2017 .

[221]  K. Fraedrich,et al.  Optimisation of simplified GCMs using circulation indices and maximum entropy production , 2008 .

[222]  P. Dirmeyer,et al.  University of Nebraska-Lincoln DigitalCommons @ University of Nebraska-Lincoln Papers in Natural Resources Natural Resources , School of 2014 Land cover changes and their biogeophysical effects on climate , 2016 .

[223]  J. Wallace,et al.  Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .