Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

We present a novel technique for the efficient boundary evaluation of sweep operations applied to objects in polygonal boundary representation. These sweep operations include Minkowski addition, offsetting, and sweeping along a discrete rigid motion trajectory. Many previous methods focus on the construction of a polygonal superset (containing self‐intersections and spurious internal geometry) of the boundary of the volumes which are swept. Only few are able to determine a clean representation of the actual boundary, most of them in a discrete volumetric setting. We unify such superset constructions into a succinct common formulation and present a technique for the robust extraction of a polygonal mesh representing the outer boundary, i.e. it makes no general position assumptions and always yields a manifold, watertight mesh. It is exact for Minkowski sums and approximates swept volumes polygonally. By using plane‐based geometry in conjunction with hierarchical arrangement computations we avoid the necessity of arbitrary precision arithmetics and extensive special case handling. By restricting operations to regions containing pieces of the boundary, we significantly enhance the performance of the algorithm.

[1]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[2]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[3]  L. Guibas,et al.  Polyhedral Tracings and their Convolution , 1996 .

[4]  Joseph K. Davidson,et al.  Improvements to algorithms for computing the Minkowski sum of 3-polytopes , 2003, Comput. Aided Des..

[5]  M. Gross,et al.  Deforming meshes that split and merge , 2009, SIGGRAPH 2009.

[6]  Tibor Steiner,et al.  Minkowski sum boundary surfaces of 3D-objects , 2007, Graph. Model..

[7]  Gershon Elber Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..

[8]  Tao Ju,et al.  Robust repair of polygonal models , 2004, ACM Trans. Graph..

[9]  Pijush K. Ghosh,et al.  A unified computational framework for Minkowski operations , 1993, Comput. Graph..

[10]  Jyh-Ming Lien A Simple Method for Computing Minkowski Sum Boundary in 3D Using Collision Detection , 2008, WAFR.

[11]  Peter K. Allen,et al.  Swept volumes and their use in viewpoint computation in robot work-cells , 1995, Proceedings. IEEE International Symposium on Assembly and Task Planning.

[12]  Peter K. Allen,et al.  Computing swept volumes , 2000, Comput. Animat. Virtual Worlds.

[13]  Dan Halperin,et al.  Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..

[14]  Gilbert Bernstein,et al.  Fast, Exact, Linear Booleans , 2009, Comput. Graph. Forum.

[15]  Jay Jung Kim Constructing the boundaries of swept volumes for screw motions , 2003 .

[16]  Dan Halperin,et al.  Improved construction of vertical decompositions of three-dimensional arrangements , 2002, SCG '02.

[17]  Lei Xie,et al.  Optimal Accurate Minkowski Sum Approximation of Polyhedral Models , 2008, ICIC.

[18]  G. Matheron Random Sets and Integral Geometry , 1976 .

[19]  L. Kobbelt,et al.  Approximate envelope reconstruction for moving solids , 2001 .

[20]  Jarek Rossignac,et al.  Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..

[21]  Markus H. Gross,et al.  Deforming meshes that split and merge , 2009, ACM Trans. Graph..

[22]  Sang C. Park,et al.  Triangular mesh intersection , 2004, The Visual Computer.

[23]  Dinesh Manocha,et al.  Fast swept volume approximation of complex polyhedral models , 2003, SM '03.

[24]  Dinesh Manocha,et al.  Accurate Minkowski sum approximation of polyhedral models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[25]  Mathematical Methods for Curves and Surfaces: Oslo 2000 , 2001 .

[26]  Jarek Rossignac,et al.  Topologically exact evaluation of polyhedra defined in CSG with loose primitives , 1996, Comput. Graph. Forum.

[27]  Peter Hachenberger Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra in Convex Pieces , 2007, ESA.

[28]  Jos B. T. M. Roerdink,et al.  An Efficient Algorithm to Calculate the Minkowski Sum of Convex 3D Polyhedra , 2001, International Conference on Computational Science.

[29]  Jarek Rossignac,et al.  Computing and visualizing pose-interpolating 3D motions , 2001, Comput. Aided Des..

[30]  Greg Turk,et al.  Simplification and Repair of Polygonal Models Using Volumetric Techniques , 2003, IEEE Trans. Vis. Comput. Graph..

[31]  Karim Abdel-Malek,et al.  Swept volumes: void and boundary identification , 1998, Comput. Aided Des..

[32]  Ming C. Leu,et al.  The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..

[33]  Florence Denis,et al.  Contributing vertices-based Minkowski sum computation of convex polyhedra , 2009, Comput. Aided Des..

[34]  Leif Kobbelt,et al.  High‐Resolution Volumetric Computation of Offset Surfaces with Feature Preservation , 2008, Comput. Graph. Forum.

[35]  Leif Kobbelt,et al.  Automatic restoration of polygon models , 2005, TOGS.

[36]  Ming C. Leu,et al.  Trimming swept volumes , 1999, Comput. Aided Des..

[37]  David W. Rosen,et al.  A Point-Based Offsetting Method of Polygonal Meshes , 2006 .

[38]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[39]  Marcel Campen,et al.  Exact and Robust (Self‐)Intersections for Polygonal Meshes , 2010, Comput. Graph. Forum.

[40]  Florence Denis,et al.  Contributing vertices-based Minkowski sum of a non-convex polyhedron without fold and a convex polyhedron , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[41]  Leonidas J. Guibas,et al.  Vertical decompositions for triangles in 3-space , 1994, SCG '94.

[42]  Tao Ju Robust repair of polygonal models , 2004, SIGGRAPH 2004.

[43]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[44]  Hayong Shin,et al.  Self-intersection Removal in Triangular Mesh Offsetting , 2003 .

[45]  Jarek Rossignac,et al.  Boundary of the volume swept by a free-form solid in screw motion , 2007, Comput. Aided Des..

[46]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[47]  Frédéric Chazal,et al.  Discrete Critical Values: a General Framework for Silhouettes Computation , 2009, Comput. Graph. Forum.

[48]  Dan Halperin,et al.  Exact minkowski sums of convex polyhedra , 2005, SCG.