Some composite-step constrained optimization methods interpreted via the perturbed sequential quadratic programming framework

We consider the inexact restoration and the composite-step sequential quadratic programming (SQP) methods, and relate them to the so-called perturbed SQP framework. In particular, iterations of the methods in question are interpreted as certain structured perturbations of the basic SQP iterations. This gives a different insight into local behaviour of those algorithms, as well as improved or different local convergence and rate of convergence results.

[1]  Alexey F. Izmailov,et al.  Sharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization , 2010, SIAM J. Optim..

[2]  P. Gill,et al.  Sequential Quadratic Programming Methods , 2012 .

[3]  Alexey F. Izmailov,et al.  On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers , 2011, Math. Program..

[4]  Alexey F. Izmailov,et al.  A Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems , 2010, SIAM J. Optim..

[5]  Alexey F. Izmailov,et al.  Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption , 2015, Comput. Optim. Appl..

[6]  Andreas Fischer,et al.  A new line search inexact restoration approach for nonlinear programming , 2010, Comput. Optim. Appl..

[7]  René Henrion,et al.  On constraint qualifications , 1992 .

[8]  Alexey F. Izmailov,et al.  Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization , 2010, Comput. Optim. Appl..

[9]  J. M. Martínez,et al.  Local Convergence of an Inexact-Restoration Method and Numerical Experiments , 2005 .

[10]  Alexey F. Izmailov,et al.  On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions , 2009, Math. Program..

[11]  J. M. Martínez,et al.  Inexact-Restoration Algorithm for Constrained Optimization1 , 2000 .

[12]  Alexey F. Izmailov,et al.  Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints , 2009, Comput. Optim. Appl..

[13]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[14]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[15]  A. F. Izmailov,et al.  Newton-Type Methods for Optimization and Variational Problems , 2014 .

[16]  J. M. Martínez,et al.  Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming , 2001 .

[17]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[18]  Alexey F. Izmailov,et al.  Stabilized SQP revisited , 2012, Math. Program..

[19]  Damián R. Fernández,et al.  An inexact restoration strategy for the globalization of the sSQP method , 2012, Computational Optimization and Applications.

[20]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[21]  Alexey F. Izmailov,et al.  A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems , 2013, Math. Program..

[22]  XiaojiaoTong,et al.  A TRUST—REGION ALGORITHM FOR NONLINEAR INEQUALITY CONSTRAINED OPTIMIZATION , 2003 .

[23]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[24]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[25]  José Mario Martínez,et al.  Inexact Restoration Method for Derivative-Free Optimization with Smooth Constraints , 2013, SIAM J. Optim..

[26]  José Mario Martínez,et al.  Inexact Restoration Methods for Nonlinear Programming: Advances and Perspectives , 2005 .