Complexity classification of some edge modification problems

In an edge modification problem one has to change the edge set of a given graph as little as possible so as to satisfy a certain property. We prove in this paper the NP-hardness of a variety of edge modification problems with respect to some well-studied classes of graphs. These include perfect, chordal, chain, comparability, split and asteroidal triple free. We show that some of these problems become polynomial when the input graph has bounded degree. We also give a general constant factor approximation algorithm for deletion and editing problems on bounded degree graphs with respect to properties that can be characterized by a finite set of forbidden induced subgraphs.

[1]  S. Muthukrishnan,et al.  Graph Editing to Bipartite Interval Graphs: Exact and Asymtotic Bounds , 1997, FSTTCS.

[2]  Takao Asano,et al.  Edge-deletion and edge-contraction problems , 1982, STOC '82.

[3]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[4]  Takao Asano An Application of Duality to Edge-Deletion Problems , 1987, SIAM J. Comput..

[5]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[6]  Philip N. Klein,et al.  Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings , 1993 .

[7]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[8]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[9]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[10]  Toshihide Ibaraki,et al.  Threshold Numbers and Threshold Completions , 1981 .

[11]  François Margot,et al.  Some Complexity Results about Threshold Graphs , 1994, Discret. Appl. Math..

[12]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[13]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[14]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[15]  Jue Xue,et al.  Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem , 1994, Networks.

[16]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[18]  John R. Beaumont,et al.  Studies on Graphs and Discrete Programming , 1982 .

[19]  S. Louis Hakimi,et al.  Orienting Graphs to Optimize Reachability , 1997, Inf. Process. Lett..

[20]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[21]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 2001, Discret. Appl. Math..

[24]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[25]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..

[26]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[27]  R. Ravi,et al.  Ordering Problems Approximated: Single-Processor Scheduling and Interval Graph Completion , 1991, ICALP.

[28]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[31]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[32]  Hans L. Bodlaender,et al.  On Intervalizing K-colored Graphs for DNA Physical Mapping , 1996, Discret. Appl. Math..

[33]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[34]  Peter L. Hammer,et al.  The splittance of a graph , 1981, Comb..

[35]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[36]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[37]  Charles J. Colbourn,et al.  The complexity of some edge deletion problems , 1988 .

[38]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[39]  Haim Kaplan,et al.  Physical Maps and Interval Sandwich Problems: Bounded Degrees Help , 1996, ISTCS.