A nonlinear model for context-dependent modulation of the binocular VOR

Studies on the behavior of the vestibulo-ocular reflex (VOR) reveal that the monocular reflex gain is adjusted according to target position relative to each eye. In this paper, we present a nonlinear approach in modeling the viewing-context dependency of the slow-phase angular VOR. We show that including appropriate nonlinearities in the responses of premotor neurons in the brainstem is sufficient to account for the online modulation of the VOR with target position. This approach allows very complex behaviors in response to sensory patterns without resorting to currently assumed cortical computations. A local premotor topology with nonlinear properties has repercussions in the study of all ocular reflexes, since it implies context dependent dynamics in all behavioral responses (pursuit, optokinetic, VOR, saccades, etc.) that share this network. Local nonlinearities in spinal circuits could similarly influence the context dependence of other motor systems (such as stretch reflex modulation during rhythmic walking).

[1]  S. Highstein,et al.  Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo‐ocular reflex of the squirrel monkey , 1987, The Journal of comparative neurology.

[2]  K. Cullen,et al.  Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons. , 1993, Journal of neurophysiology.

[3]  W M King,et al.  Ocular Selectivity of Units in Oculomotor Pathways a , 1996, Annals of the New York Academy of Sciences.

[4]  Kathleen E Cullen,et al.  Semicircular Canal Afferents Similarly Encode Active and Passive Head-On-Body Rotations: Implications for the Role of Vestibular Efference , 2002, The Journal of Neuroscience.

[5]  Erik S. Viirre,et al.  The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration , 1997, Experimental Brain Research.

[6]  E. Viirre,et al.  The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration , 1997, Experimental Brain Research.

[7]  E. Godaux,et al.  Resonance of spike discharge modulation in neurons of the guinea pig medial vestibular nucleus. , 2001, Journal of neurophysiology.

[8]  L. Snyder,et al.  Effect of viewing distance and location of the axis of head rotation on the monkey's vestibuloocular reflex. I. Eye movement responses. , 1992, Journal of neurophysiology.

[9]  S. Lisberger,et al.  Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. , 1994, Journal of neurophysiology.

[10]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[11]  T Vilis,et al.  A reexamination of the gain of the vestibuloocular reflex. , 1986, Journal of neurophysiology.

[12]  H. Galiana,et al.  A bilateral model for central neural pathways in vestibuloocular reflex. , 1984, Journal of neurophysiology.

[13]  H. L. Galiana,et al.  A bilateral model integrating vergence and the vestibulo-ocular reflex , 2004, Experimental Brain Research.

[14]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. , 1971, Journal of neurophysiology.

[15]  H Shimazu,et al.  Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. , 1966, Journal of neurophysiology.

[16]  S. Lisberger,et al.  Vestibular inputs to brain stem neurons that participate in motor learning in the primate vestibuloocular reflex. , 1992, Journal of neurophysiology.

[17]  S. Lisberger Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. , 1994, Journal of neurophysiology.

[18]  H. Galiana,et al.  Hypothesis for shared central processing of canal and otolith signals. , 1998, Journal of neurophysiology.

[19]  H.L. Galiana A nystagmus strategy to linearize the vestibulo-ocular reflex , 1991, IEEE Transactions on Biomedical Engineering.

[20]  R. McCrea,et al.  Effects of viewing distance on the responses of horizontal canal-related secondary vestibular neurons during angular head rotation. , 1999, Journal of neurophysiology.

[21]  F. A. Miles,et al.  Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. , 1980, Journal of neurophysiology.

[22]  W. Precht,et al.  Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. , 1979, Journal of neurophysiology.

[23]  D. Robinson,et al.  Oculomotor signals in medial longitudinal fasciculus of the monkey. , 1978, Journal of neurophysiology.

[24]  Wu Zhou,et al.  Activity-dependent modulation: a non-linearity in the unilateral vestibulo-ocular reflex pathways , 2005, Experimental Brain Research.

[25]  A. A. Skavenski,et al.  Role of abducens neurons in vestibuloocular reflex. , 1973, Journal of neurophysiology.

[26]  J. Douglas Crawford,et al.  Modularity and parallel processing in the oculomotor integrator , 2004, Experimental Brain Research.

[27]  H. Galiana,et al.  Integrator function in the oculomotor system is dependent on sensory context. , 2005, Journal of neurophysiology.

[28]  Wu Zhou,et al.  Sound-evoked vestibulo-ocular reflexes (VOR) in trained monkeys , 2004, Experimental Brain Research.

[29]  L. Mays Neural control of vergence eye movements: convergence and divergence neurons in midbrain. , 1984, Journal of neurophysiology.

[30]  F. A. Miles,et al.  Plasticity in the vestibulo-ocular reflex: a new hypothesis. , 1981, Annual review of neuroscience.

[31]  G D Paige,et al.  Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. , 1991, Acta oto-laryngologica. Supplementum.

[32]  G. Barnes,et al.  Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. , 1998, Journal of neurophysiology.

[33]  L. Minor,et al.  Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. , 1999, Journal of neurophysiology.

[34]  A. Fuchs,et al.  Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. , 1992, Journal of neurophysiology.

[35]  D. Robinson,et al.  Signals in vestibular nucleus mediating vertical eye movements in the monkey. , 1984, Journal of neurophysiology.

[36]  R. Tomlinson,et al.  Behavior of eye-movement-related cells in the vestibular nuclei during combined rotational and translational stimuli. , 1996, Journal of neurophysiology.

[37]  J. Demer,et al.  Human horizontal vestibulo-ocular reflex initiation: effects of acceleration, target distance, and unilateral deafferentation. , 1998, Journal of neurophysiology.

[38]  S. Lisberger,et al.  Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. , 1994, Journal of neurophysiology.