Low Complexity Wiener Filtering in CDMA Systems Using a Class of Pseudo-Noise Spreading Codes

Code division multiple access (CDMA) has become a widely adopted technology for wireless communications, particularly in mobile third generation systems (3G) and global positional system (GPS). In CDMA, a particular class of pseudonoise (PN) spreading codes yields a code-set Grammian with only two distinct eigenvalues. For these spreading codes, we propose a computationally efficient method for signal detection using Wiener filtering. Our approach relies on a matrix inversion step, where we gain in computational efficiency by using the Sherman-Morrison-Woodbury formula. The resulting approach involves significantly less computational load compared to popular approaches like Conjugate Gradient (CG) method and the (traditional) Cholesky decomposition.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  G. Mazzini,et al.  Corrections to "Chaotic Complex Spreading Sequences for Asynchronous DS-CDMA—Part I: System Modeling and Results" 1 , 1998 .

[3]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[4]  H. Ge,et al.  Warp convergence in conjugate gradient Wiener filters , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[5]  Roy D. Yates,et al.  Optimum multiuser detection is tractable for synchronous CDMA systems using m-sequences , 1998, IEEE Communications Letters.

[6]  K. Kitayama,et al.  Spreading sequences using periodic orbits of chaos for CDMA , 1999 .

[7]  Andreas F. Molisch,et al.  Wireless Communications , 2005 .

[8]  Antti Toskala,et al.  Wcdma for Umts , 2002 .

[9]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[10]  Michael L. Honig,et al.  Advances in Multiuser Detection , 2009 .

[11]  Guido K. E. Dietl Linear Estimation and Detection in Krylov Subspaces , 2007 .

[12]  Hongya Ge,et al.  Reduced-rank multiuser detectors based on vector and matrix conjugate gradient Wiener filters , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[13]  Hongya Ge,et al.  Spreading Codes Enabling Warp Converging Wiener Filters for Multiuser Detection in CDMA Systems , 2008, 2008 IEEE International Conference on Communications.

[14]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[15]  T. Kasami WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS OF CYCLIC CODES , 1966 .

[16]  Juha Korhonen,et al.  Introduction to 3G Mobile Communications , 2001 .