Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property

We prove the differentiability of Lipschitz maps X → V, where X denotes a PI space, i.e. a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon–Nikodym Property (RNP). As a consequence, we obtain a bi-Lipschitz nonembedding theorem for RNP targets. The differentiation theorem depends on a new specification of the differentiable structure for PI spaces involving directional derivatives in the direction of velocity vectors to rectifiable curves. We give two different proofs of this, the second of which relies on a new characterization of the minimal upper gradient. There are strong implications for the infinitesimal structure of PI spaces which will be discussed elsewhere.

[1]  New Classes of Lp Spaces , 1981 .

[2]  R. C. James,et al.  The asymptotic-norming and Radon-Nikodým properties for Banach spaces , 1981 .

[3]  The asymptotic-norming and the Radon-Nikodým properties are equivalent in separable Banach spaces , 1985 .

[4]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[5]  R. O'Brien,et al.  A separable Banach space with the Radon-Nikodým property that is not isomorphic to a subspace of a separable dual , 1980 .

[6]  Kellen Petersen August Real Analysis , 2009 .

[7]  H. Fédérer Geometric Measure Theory , 1969 .

[8]  Marc Bourdon,et al.  Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings , 1997 .

[9]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[10]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[11]  B. Maurey,et al.  Counterexamples to several problems concerning _{}-embeddings , 1984 .

[12]  J. Heinonen,et al.  Sobolev classes of Banach space-valued functions and quasiconformal mappings , 2001 .

[13]  N. Shanmugalingam Newtonian spaces: An extension of Sobolev spaces to metric measure spaces , 2000 .

[14]  Scott Pauls The large scale geometry of nilpotent Lie groups , 1999 .

[15]  Bernd Kirchheim Rectifiable metric spaces: local structure and regularity of the Hausdorff measure , 1994 .

[16]  J. J. Uhl,et al.  GEOMETRIC ASPECTS OF CONVEX SETS WITH THE RADON‐NIKODYM PROPERTY (Lecture Notes in Mathematics, 993) , 1985 .

[17]  J. Heinonen,et al.  From local to global in quasiconformal structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  New classes of L[p]-spaces , 1981 .

[19]  Characterization of the Radon-Nikodym property in terms of inverse limits , 2007, 0706.3389.

[20]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[21]  R. D. Bourgin,et al.  Geometric Aspects of Convex Sets with the Radon-Nikodym Property , 1983 .

[22]  Paul Ernest,et al.  The mathematics department , 1988 .