On the approximation of functions with line singularities by ridgelets
暂无分享,去创建一个
[1] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[2] S. Dahlke. Extraction of quantifiable information from complex systems , 2014 .
[3] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[4] Konstantin Grella,et al. Sparse Discrete Ordinates Method in Radiative Transfer , 2011, Comput. Methods Appl. Math..
[5] Wolfgang Dahmen,et al. Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..
[6] M. Nielsen,et al. Frame Decomposition of Decomposition Spaces , 2007 .
[7] Arnulf Jentzen,et al. Weak Convergence Rates for Spatial Spectral Galerkin Approximations of Semilinear Stochastic Wave Equations with Multiplicative Noise , 2015, Applied Mathematics & Optimization.
[8] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[9] Wolfgang Dahmen,et al. Efficient Resolution of Anisotropic Structures , 2014 .
[10] Albino Perego,et al. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS , 2015, 1511.08519.
[11] Philipp Grohs,et al. FFRT: A Fast Finite Ridgelet Transform for Radiative Transport , 2014, Multiscale Model. Simul..
[12] Philipp Grohs,et al. Optimal adaptive ridgelet schemes for linear advection equations , 2016 .
[13] Marsha J. Berger,et al. An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes , 2015, J. Sci. Comput..
[14] Gitta Kutyniok,et al. Shearlets: Multiscale Analysis for Multivariate Data , 2012 .
[15] Demetrio Labate,et al. Harmonic and Applied Analysis - From Groups to Signals , 2015, Harmonic and Applied Analysis.
[16] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[17] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[18] Lena Schwartz,et al. Theory Of Function Spaces Ii , 2016 .
[19] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[20] H. Triebel. Theory of Function Spaces III , 2008 .
[21] Emmanuel J. Candès. Ridgelets and the Representation of Mutilated Sobolev Functions , 2001, SIAM J. Math. Anal..
[22] Wang-Q Lim,et al. Shearlets and Optimally Sparse Approximations , 2011, ArXiv.
[23] Gitta Kutyniok,et al. Parabolic Molecules , 2012, Found. Comput. Math..
[24] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[25] Arnulf Jentzen,et al. On stochastic differential equations with arbitrary slow convergence rates for strong approximation , 2015, 1506.02828.
[26] Axel Clemens Obermeier,et al. Ridgelets — An Optimally Adapted Representation System For Solving Advection Equations , 2015 .
[27] Arnulf Jentzen,et al. Weak Convergence Rates for Euler-Type Approximations of Semilinear Stochastic Evolution Equations with Nonlinear Diffusion Coefficients , 2015, Found. Comput. Math..
[28] Rolf Rannacher,et al. Numerical methods in multidimensional radiative transfer , 2009 .
[29] D. Donoho. Sparse Components of Images and Optimal Atomic Decompositions , 2001 .
[30] E. Candès,et al. Continuous curvelet transform , 2003 .
[31] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[32] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[33] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[34] M. Modest. Radiative heat transfer , 1993 .
[35] C. Schwab,et al. Numerical analysis of lognormal diffusions on the sphere , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.
[36] Arnulf Jentzen,et al. Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values , 2014, Journal of Mathematical Analysis and Applications.
[37] P. Grohs. Ridgelet-type Frame Decompositions for Sobolev Spaces related to Linear Transport , 2012 .
[38] Herbert S. Wilf,et al. Generating functionology , 1990 .
[39] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[40] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[41] K. Tamvakis. Molécules , 2020, Merveilleuses structures.
[42] Loukas Grafakos,et al. Modern Fourier Analysis , 2008 .
[43] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[44] Gitta Kutyniok,et al. Anisotropic multiscale systems on bounded domains , 2015, Adv. Comput. Math..
[45] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[46] Rob Stevenson,et al. Fractional Space-Time Variational Formulations of (Navier-) Stokes Equations , 2017, SIAM Journal on Mathematical Analysis.
[47] Rob P. Stevenson,et al. Computation of differential operators in wavelet coordinates , 2005, Math. Comput..
[48] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[49] C. Bennett,et al. Interpolation of operators , 1987 .
[50] Martin Frank,et al. APPROXIMATE MODELS FOR RADIATIVE TRANSFER , 2007 .
[51] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .