Choosability of toroidal graphs without short cycles

Let G be a toroidal graph without cycles of a fixed length k, and χl(G) the list chromatic number of G. We establish tight upper bounds of χl(G) for the following values of k: \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}\begin{eqnarray*}\chi_l({{G}})\le \left\{\begin{array}{ll}{{4}} & \mbox{if } {{k}}\in \{{{3}},{{4}},{{5}}\} \\{{5}} & \mbox{if } {{k}} = {{6}} \\{{6}} & \mbox{if } {{k}} = {{7}}\end{array}\right.\end{eqnarray*}\end{document}© 2009 Wiley Periodicals, Inc. J Graph Theory 65: 1–15, 2010.

[1]  Carsten Thomassen,et al.  Color-Critical Graphs on a Fixed Surface , 1997, J. Comb. Theory, Ser. B.

[2]  G. Dirac Map-Colour Theorems , 1952, Canadian Journal of Mathematics.

[3]  Ko-Wei Lih,et al.  Choosability and edge choosability of planar graphs without five cycles , 2002, Appl. Math. Lett..

[4]  Robin Thomas,et al.  Coloring even-faced graphs in the torus and the Klein bottle , 2008, Comb..

[5]  Ko-Wei Lih,et al.  The 4-choosability of planar graphs without 6-cycles , 2001, Australas. J Comb..

[6]  Bojan Mohar,et al.  Planar Graphs Without Cycles of Specific Lengths , 2002, Eur. J. Comb..

[7]  Margit Voigt List colourings of planar graphs , 2006, Discret. Math..

[8]  Atsuhiro Nakamoto,et al.  Fractional chromatic numbers of cones over graphs , 2001 .

[9]  Leonid S. Melnikov,et al.  Some counterexamples associated with the three-color problem , 1980, J. Comb. Theory, Ser. B.

[10]  Margit Voigt,et al.  A not 3-choosable planar graph without 3-cycles , 1995, Discret. Math..

[11]  Ko-Wei Lih,et al.  Choosability and Edge Choosability of Planar Graphs without Intersecting Triangles , 2002, SIAM J. Discret. Math..

[12]  Atsuhiro Nakamoto,et al.  Chromatic numbers of quadrangulations on closed surfaces , 2001 .

[13]  Carsten Thomassen,et al.  Grötzsch's 3-Color Theorem and Its Counterparts for the Torus and the Projective Plane , 1994, J. Comb. Theory, Ser. B.

[14]  Arthur T. White,et al.  A 4-color theorem for toroidal graphs , 1972 .

[15]  Babak Farzad Planar Graphs without 7-Cycles Are 4-Choosable , 2009, SIAM J. Discret. Math..

[16]  Baogang Xu,et al.  On Structure of Some Plane Graphs with Application to Choosability , 2001, J. Comb. Theory B.

[17]  Alexandr V. Kostochka,et al.  List edge chromatic number of graphs with large girth , 1992, Discret. Math..

[18]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[19]  Michael Stiebitz,et al.  Dirac's map-color theorem for choosability , 1999 .

[20]  Baogang Xu,et al.  The 4-Choosability of Plane Graphs without 4-Cycles' , 1999, J. Comb. Theory, Ser. B.

[21]  Carsten Thomassen Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.

[22]  Carsten Thomassen,et al.  3-List-Coloring Planar Graphs of Girth 5 , 1995, J. Comb. Theory B.

[23]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[24]  G. Ringel Map Color Theorem , 1974 .

[25]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[26]  Joan P. Hutchinson,et al.  Three-Coloring Graphs Embedded on Surfaces with All Faces Even-Sided , 1995, J. Comb. Theory, Ser. B.

[27]  Alexandr V. Kostochka,et al.  The colour theorems of Brooks and Gallai extended , 1996, Discret. Math..