Hypergraph min-cuts from quantum entropies

The min-cut function of weighted hypergraphs and the von Neumann entropy of pure quantum states are both symmetric submodular functions. In this note, we explain this coincidence by proving that the min-cut function of any weighted hypergraph can be approximated (up to an overall rescaling) by the entropies of quantum states known as stabilizer states. This implies that the min-cuts of hypergraphs are constrained by quantum entropy inequalities, and it shows that the recently defined hypergraph cones are contained in the quantum stabilizer entropy cones, as has been conjectured in the recent literature.

[1]  Michael Walter,et al.  Holographic entropy inequalities and gapped phases of matter , 2015, 1507.05650.

[2]  V. Hubeny,et al.  The Holographic Entropy Arrangement , 2018, Fortschritte der Physik.

[3]  M. Walter,et al.  The holographic entropy cone , 2015, 1505.07839.

[4]  Newton Cheng,et al.  A Gap Between the Hypergraph and Stabilizer Entropy Cones , 2020, 2006.16292.

[5]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[6]  Sergio Hernandez-Cuenca Holographic entropy cone for five regions , 2019, Physical Review D.

[7]  Frantisek Matús,et al.  The Quantum Entropy Cone of Stabiliser States , 2013, TQC.

[8]  Xi Dong,et al.  Holographic entropy cone with time dependence in two dimensions , 2019, Journal of High Energy Physics.

[9]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[10]  Michael Walter,et al.  Stabilizer information inequalities from phase space distributions , 2013, ArXiv.

[11]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[12]  D. Marolf,et al.  Handlebody phases and the polyhedrality of the holographic entropy cone , 2017, 1705.10736.

[13]  D. Gross,et al.  Schur–Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations , 2017, Communications in Mathematical Physics.

[14]  Ning Bao,et al.  The Quantum Entropy Cone of Hypergraphs , 2020, SciPost Physics.

[15]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[16]  A. Winter,et al.  A New Inequality for the von Neumann Entropy , 2004, quant-ph/0406162.

[17]  Nicholas Pippenger,et al.  The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.

[18]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[19]  Patrick M. Hayden,et al.  One-shot Multiparty State Merging , 2010, ArXiv.

[20]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[21]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[22]  M. Walter,et al.  Multipartite Entanglement in Stabilizer Tensor Networks. , 2016, Physical review letters.