Nanostructured Scaffolds for Bone Tissue Engineering

[1]  Laura A. Smith,et al.  The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. , 2010, Biomaterials.

[2]  S. Vengallatore,et al.  Nanotechnology and Bone Healing , 2010, Journal of orthopaedic trauma.

[3]  S. Soker,et al.  Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. , 2010, Biomaterials.

[4]  Farshid Guilak,et al.  Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. , 2010, Biomaterials.

[5]  J. Ong,et al.  In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. , 2009, Journal of biomedical materials research. Part A.

[6]  F. He,et al.  Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit. , 2009, International journal of oral and maxillofacial surgery.

[7]  Peter X Ma,et al.  Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. , 2009, Biomaterials.

[8]  Laura A. Smith,et al.  Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[9]  P. Layrolle,et al.  Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. , 2008, Clinical oral implants research.

[10]  T. Albrektsson,et al.  Nano hydroxyapatite structures influence early bone formation. , 2008, Journal of biomedical materials research. Part A.

[11]  Cato T Laurencin,et al.  Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. , 2008, Biomacromolecules.

[12]  P. Layrolle,et al.  Osteoblastic cell behavior on nanostructured metal implants. , 2008, Nanomedicine.

[13]  Antonios G Mikos,et al.  Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds. , 2007, Biomacromolecules.

[14]  C. Luppen,et al.  Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. , 2007, Bone.

[15]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[16]  C. Laurencin,et al.  Nanostructures for Tissue Engineering/Regenerative Medicine , 2007 .

[17]  William V Giannobile,et al.  The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. , 2007, Biomaterials.

[18]  D. Hamilton,et al.  The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. , 2007, Biomaterials.

[19]  Cato T Laurencin,et al.  Nanobiomaterial applications in orthopedics , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[20]  Myron Spector,et al.  Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy. , 2006, Biomaterials.

[21]  M. Spector,et al.  Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy , 2006 .

[22]  G. Roodman Regulation of Osteoclast Differentiation , 2006, Annals of the New York Academy of Sciences.

[23]  B. Hall,et al.  Buried alive: How osteoblasts become osteocytes , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[24]  C. Chung,et al.  Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. , 2005, Journal of periodontology.

[25]  Peter X. Ma,et al.  Scaffolding In Tissue Engineering , 2005 .

[26]  Takatoshi Kinoshita,et al.  Dynamic reassembly of peptide RADA16 nanofiber scaffold. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[28]  K. Ng,et al.  Cell lines and primary cell cultures in the study of bone cell biology , 2004, Molecular and Cellular Endocrinology.

[29]  Joseph P Vacanti,et al.  Osteoclastogenesis on tissue-engineered bone. , 2004, Tissue engineering.

[30]  Joseph P Vacanti,et al.  In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. , 2004, Tissue engineering.

[31]  D. Landolt,et al.  Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. , 2004, Biomaterials.

[32]  P. Ma,et al.  Polymeric Scaffolds for Bone Tissue Engineering , 2004, Annals of Biomedical Engineering.

[33]  Peter X Ma,et al.  Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. , 2003, Journal of biomedical materials research. Part A.

[34]  Z. Schwartz,et al.  [The role of surface roughness in promoting osteointegration]. , 2003, Refu'at ha-peh veha-shinayim.

[35]  Gideon A. Rodan,et al.  Control of osteoblast function and regulation of bone mass , 2003, Nature.

[36]  N. Takahashi,et al.  Regulatory mechanisms of osteoblast and osteoclast differentiation. , 2002, Oral diseases.

[37]  N. Udagawa,et al.  [Possible role of receptor activator of NF-kappa B ligand(RANKL) in osteoclast differentiation and function]. , 2002, Nihon rinsho. Japanese journal of clinical medicine.

[38]  M. Zaidi,et al.  Cathepsin K, Osteoclastic Resorption, and Osteoporosis Therapy , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[39]  M. Kasper,et al.  Synergistic Effect of Titanium Alloy and Collagen Type I on Cell Adhesion, Proliferation and Differentiation of Osteoblast-Like Cells , 2001, Cells Tissues Organs.

[40]  S. Gronthos,et al.  Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. , 2001, Bone.

[41]  P. Ducy CBFA1: A molecular switch in osteoblast biology , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[42]  J. Aubin,et al.  Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro , 1999, Journal of cellular biochemistry.

[43]  G D Roodman,et al.  Cell biology of the osteoclast. , 1999, Experimental hematology.

[44]  G. Karsenty,et al.  Cbfa1 as a regulator of osteoblast differentiation and function. , 1999, Bone.

[45]  G. Karsenty,et al.  A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. , 1999, Genes & development.

[46]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[47]  S. Gronthos,et al.  Integrin Expression and Function on Human Osteoblast‐like Cells , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[48]  T. Hunter,et al.  Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase , 1994, Nature.

[49]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[50]  R. Dodds,et al.  Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. , 1992, Journal of cell science.

[51]  A. Kahn,et al.  Lysozyme synthesis in osteoclasts , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[52]  T. Keller,et al.  Young's modulus, bending strength, and tissue physical properties of human compact bone , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[53]  L. McManus,et al.  Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells , 1984, The Journal of cell biology.

[54]  W. Hayes,et al.  The compressive behavior of bone as a two-phase porous structure. , 1977, The Journal of bone and joint surgery. American volume.

[55]  Andrés J. García,et al.  Extracellular matrix-mimetic adhesive biomaterials for bone repair. , 2011, Journal of biomedical materials research. Part A.

[56]  Cato T. Laurencin,et al.  Nanotechnology and orthopedics: a personal perspective. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[57]  Peter X Ma,et al.  Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. , 2007, Biomaterials.

[58]  Dennis R. Carter,et al.  Mechanical loading histories and cortical bone remodeling , 2006, Calcified Tissue International.

[59]  J. Jansen,et al.  Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. , 2005, Biomaterials.

[60]  J. Aubin Regulation of Osteoblast Formation and Function , 2004, Reviews in Endocrine and Metabolic Disorders.

[61]  J. A. Cooper,et al.  Tissue engineering: orthopedic applications. , 1999, Annual review of biomedical engineering.

[62]  S. Reddy,et al.  Control of osteoclast differentiation. , 1998, Critical reviews in eukaryotic gene expression.

[63]  J. Aubin,et al.  Bone stem cells , 1998, Journal of cellular biochemistry.

[64]  J. Aubin,et al.  Advances in the osteoblast lineage. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[65]  R Langer,et al.  Stabilized polyglycolic acid fibre-based tubes for tissue engineering. , 1996, Biomaterials.

[66]  J. Vacanti,et al.  Tissue engineering : Frontiers in biotechnology , 1993 .

[67]  L. Gibson The mechanical behaviour of cancellous bone. , 1985, Journal of biomechanics.