Surface intergranular cracking in large strain fatigue

[1]  R. H. Wagoner,et al.  Dislocation pile-up and grain boundary interactions in 304 stainless steel , 1986 .

[2]  R. H. Wagoner,et al.  Micromechanism of slip propagation through a high angle boundary in alpha brass , 1986 .

[3]  R. Raj,et al.  The role of residual dislocation arrays in slip induced cavitation, migration and dynamic recrystallization at grain boundaries , 1985 .

[4]  R. Raj,et al.  Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K , 1985 .

[5]  H. Kurishita,et al.  Grain Boundary Fracture in Molybdenum Bicrystals with Various 〈110〉 Symmetric Tilt Boundaries , 1985 .

[6]  Fu-Rong Chen,et al.  Interactions Between Lattice Partial Dislocations and Grain Boundaries , 1984 .

[7]  R. Raj,et al.  Effect of boundary structure on slip-induced cavitation in polycrystalline nickel , 1984 .

[8]  Rishi Raj,et al.  On the distribution of Σ for grain boundaries in polycrystalline nickel prepared by strainannealing technique , 1984 .

[9]  R. Raj,et al.  On slip-induced intergranular cavitation during low-cycle fatigue of nickel at intermediate temperature , 1984 .

[10]  C. Laird,et al.  Crack initiation mechanisms in copper polycrystals cycled under constant strain amplitudes and in step tests , 1983 .

[11]  D. Majumdar,et al.  Surface deformation and crack initiation during fatigue of vacuum melted iron: Environmental effects , 1983 .

[12]  H. Fujita,et al.  Dislocation Behavior in the Vicinity of Grain Boundaries in FCC Metals and Alloys , 1983 .

[13]  F. Inoko,et al.  Initiation of Fatigue Cracks along Grain Boundaries in Aluminum Bicrystals , 1982 .

[14]  L. Clarebrough,et al.  Prismatic glide and slip transfer across a high-angle grain boundary , 1981 .

[15]  M. Biscondi,et al.  Intrinsic intergranular brittleness of molybdenum , 1981 .

[16]  R. H. Bricknell,et al.  The embrittlement of nickel following high temperature air exposure , 1981 .

[17]  L. Rémy The interaction between slip and twinning systems and the influence of twinning on the mechanical behavior of fcc metals and alloys , 1981 .

[18]  F. Inoko,et al.  Effect of Crystal Boundaries on the Initiation of Fatigue Cracks in Aluminum Bicrystals , 1980 .

[19]  P. Howell,et al.  Observation of transgranular slip in an austenitic stainless steel , 1978 .

[20]  Campbell Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—II. mechanism , 1978 .

[21]  C. Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—I. Microscopic and interferometric observations , 1978 .

[22]  R. Pond,et al.  On the absorption of dislocations by grain boundaries , 1977 .

[23]  L. Rémy Twin-slip interaction in f.c.c. crystals , 1977 .

[24]  J. Hirth,et al.  On grain boundary dislocations and ledges , 1973 .

[25]  D. Brandon,et al.  The structure of high-angle grain boundaries , 1966 .

[26]  A. Mcevily,et al.  On the Formation of Fatigue Cracks at Twin Boundaries , 1964 .

[27]  G. Smith,et al.  Initial stages of damage in high stress fatigue in some pure metals , 1963 .

[28]  J. Mcgrath Void Formation in Aluminum Bicrystals Subjected to Cyclic Reversed Bending , 1963 .

[29]  N. J. Wadsworth,et al.  The effect of atmospheric corrosion on metal fatigue , 1958 .

[30]  N. Thompson,et al.  Xi. The origin of fatigue fracture in copper , 1956 .