A Survey of the Logic of Effective Definitions

LED, the Logic of Effective Definitions, is an extension of first order predicate calculus used for making assertions about programs. Programs are modeled as effective definitional schemes (following Friedman). Logical properties of LED and its relations to classical logics and other programming logics are surveyed.

[1]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[2]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[3]  P. H. Lindsay Human Information Processing , 1977 .

[4]  E. López-Escobar An interpolation theorem for denumerably long formulas , 1965 .

[5]  Sheila A. Greibach,et al.  Theory of Program Structures: Schemes, Semantics, Verification , 1976, Lecture Notes in Computer Science.

[6]  Andrzej Salwicki On the algorithmic theory of stacks , 1980, Fundam. Informaticae.

[7]  Jan A. Bergstra,et al.  Algorithmic degrees of algebraic structures , 1981, Fundam. Informaticae.

[8]  R. Milner Mathematical Centre Tracts , 1976 .

[9]  Denis J. Kfoury Comparing Algebraic Structures up to Algorithmic Equivalence , 1972, ICALP.

[10]  J. C. Shepherdson,et al.  Computation Over Abstract Structures: Serial and Parallel Procedures and Friedman's Effective Definitional Schemes , 1975 .

[11]  Albert R. Meyer,et al.  Can Partial Correctness Assertions Specify Programming Language Semantics? , 1979, Theoretical Computer Science.

[12]  Jan A. Bergstra,et al.  On the quantifier-free fragment of 'Logic of effective definitions' , 1981, Fundam. Informaticae.

[13]  Helena Rasiowa On logic of complex algorithms , 1979, FCT.

[14]  Joseph Y. Halpern,et al.  Axiomatic definitions of programming languages: a theoretical assessment (preliminary report) , 1980, POPL '80.

[15]  Antoni Kreczmar,et al.  An introduction to algorithmic logic; metamathematical investigations in the theory of programs , 1977 .

[16]  Helena Rasiowa omega+-Valued Algorithmic Logic as a Tool to Investigate Procedures , 1974, MFCS.

[17]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[18]  Assaf J. Kfoury,et al.  Translatability of Schemas over Restricted Interpretations , 1974, J. Comput. Syst. Sci..

[19]  Rohit Parikh,et al.  The Completeness of Propositional Dynamic Logic , 1978, MFCS.

[20]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.

[21]  H. Keisler Model theory for infinitary logic , 1971 .

[22]  Robert L. Constable,et al.  On Classes of Program Schemata , 1972, SIAM J. Comput..

[23]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[24]  Robert L. Constable A Constructive Programming Logic , 1977, IFIP Congress.

[25]  Jan A. Bergstra,et al.  Implicit definability of algebraic structures by means of program properties , 1979, FCT.

[26]  Erwin Engeler Generalized Galois Theory and its Application to Complexity , 1981, Theor. Comput. Sci..

[27]  J. Moldestad,et al.  Finite alogorithmic procedures and computation theories. , 1980 .

[28]  K. Mani Chandy,et al.  Current trends in programming methodology , 1977 .

[29]  Jerzy Tiuryn,et al.  Logic of effective definitions , 1981, Fundam. Informaticae.

[30]  R. L. Goodstein,et al.  Logic Colloquium '69 , 1972 .

[31]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.