The games computers (and people) play

The development of high-performance game-playing programs has been one of the major successes of artificial intelligence research. The results have been outstanding but, with one notable exception (Deep Blue), they have not been widely disseminated. This talk will discuss the past, present, and future of the development of games-playing programs. Case studies for backgammon, bridge, checkers, chess, go, hex, Othello, poker, and Scrabble will be used. The research emphasis of the past has been on high performance (synonymous with brute-force search) for twoplayer perfect-information games. The research emphasis of the present encompasses multi-player imperfect/nondeterministic information games. And what of the future? There are some surprising changes of direction occurring that will result in games being more of an experimental testbed for mainstream AI research, with less emphasis on building world-championship-caliber programs. One of the most profound contributions to mankind’s knowledge has been made by the artificial intelligence (AI) research community: the realization that intelligence is not uniquely human. 1 Using computers, it is possible to achieve human-like behavior in nonhumans. In other words, the illusion of human intelligence can be created in a computer. This idea has been vividly illustrated throughout the history of computer games research. Unlike most of the early work in AI, game researchers were interested in developing high-performance, real-time solutions to challenging problems. This led to an ends-justify-the-means attitude: the result—a strong chess program—was all that mattered, not the means by which it was achieved. In contrast, much of the mainstream AI work used simplified domains, while eschewing real-time performance objectives. This research typically used human intelligence as a model: one only had to emulate the human example to achieve intelligent behavior. The battle (and philosophical) lines were drawn. The difference in philosophy can be easily illustrated. The human brain and the computer are different machines, each with its own sets of strengths and weaknesses. Humans are good at, for example, learning, reasoning by analogy, and

[1]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[2]  Jonathan Schaeffer,et al.  Experiments in Search and Knowledge , 1986, J. Int. Comput. Games Assoc..

[3]  David A. McAllester Conspiracy Numbers for Min-Max Search , 1988, Artif. Intell..

[4]  Claude E. Shannon,et al.  XXII. Programming a Computer for Playing Chess 1 , 1950 .

[5]  Kai-Fu Lee,et al.  The Development of a World Class Othello Program , 1990, Artif. Intell..

[6]  Stuart C. Shapiro A Scrabble Crossword Game Playing Program , 1979, IJCAI.

[7]  Ulf Lorenz,et al.  Controlled Conspiracy-Number Search , 1995, J. Int. Comput. Games Assoc..

[8]  C. S. Strachey,et al.  Logical or non-mathematical programmes , 1952, ACM '52.

[9]  Gerald Tesauro,et al.  Neurogammon Wins Computer Olympiad , 1989, Neural Computation.

[10]  D. Papp Dealing with imperfect information in poker , 1998 .

[11]  Jonathan Schaeffer,et al.  Exploiting Graph Properties of Game Trees , 1996, AAAI/IAAI, Vol. 1.

[12]  Stuart J. Russell,et al.  Do the right thing , 1991 .

[13]  Dana S. Nau,et al.  Success in Spades: Using AI Planning Techniques to Win the World Championship of Computer Bridge , 1998, AAAI/IAAI.

[14]  Jonathan Schaeffer,et al.  Search Versus Knowledge in Game-Playing Programs Revisited , 1997, IJCAI.

[15]  Norman Zadeh,et al.  On Optimal Doubling in Backgammon , 1977 .

[16]  Dana S. Nau,et al.  Computer Bridge - A Big Win for AI Planning , 1998, AI Mag..

[17]  Dap Hartmann,et al.  Games in AI Research , 2000, J. Int. Comput. Games Assoc..

[18]  J. McCarthy AI as Sport , 1997, Science.

[19]  Judea Pearl,et al.  SCOUT: A Simple Game-Searching Algorithm with Proven Optimal Properties , 1980, AAAI.

[20]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[21]  L. V. Allis,et al.  Searching for solutions in games and artificial intelligence , 1994 .

[22]  Chris McConnell,et al.  B Probability Based Search , 1996, Artif. Intell..

[23]  Ian Frank,et al.  Search and planning under incomplete information - a study using bridge card play , 1998, Distinguished dissertations.

[24]  Marina Krol,et al.  Have We Witnessed a Real-Life Turing Test? , 1999, Computer.

[25]  Eric B. Baum,et al.  A Bayesian Approach to Relevance in Game Playing , 1997, Artif. Intell..

[26]  Hans J. Berliner,et al.  The B* Tree Search Algorithm: A Best-First Proof Procedure , 1979, Artif. Intell..

[27]  Carl Ebeling,et al.  All the Right Moves: A VLSI Architecture for Chess , 1987 .

[28]  Ronald L. Rivest,et al.  Game Tree Searching by Min/Max Approximation , 1987, Artif. Intell..

[29]  Aske Plaat,et al.  Research, Re: Search and Re-Search , 1996, J. Int. Comput. Games Assoc..

[30]  Peter W. Frey,et al.  Chess Skill in Man and Machine , 1984, Springer New York.

[31]  Martin Müller,et al.  Computer Go: A Research Agenda , 1998, Computers and Games.

[32]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[33]  Edward W. Felten,et al.  A Highly Parallel Chess Program , 1988, Fifth Generation Computer Systems.

[34]  Steven A. Gordon A faster scrabble move generation algorithm , 1994, Softw. Pract. Exp..

[35]  Andrew Tridgell,et al.  Experiments in Parameter Learning Using Temporal Differences , 1998, J. Int. Comput. Games Assoc..

[36]  Jonathan Schaeffer,et al.  Using Probabilistic Knowledge and Simulation to Play Poker , 1999, AAAI/IAAI.

[37]  Richard E. Korf,et al.  Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.

[38]  David N. L. Levy,et al.  Heuristic Programming in Artificial Intelligence , 1991, J. Int. Comput. Games Assoc..

[39]  Matthew L. Ginsberg,et al.  Partition Search , 1996, AAAI/IAAI, Vol. 1.

[40]  K. Thompson,et al.  BELLE CHESS HARDWARE , 1982 .

[41]  Elwyn R. Berlekamp,et al.  Program for Double-Dummy Bridge Problems—A New Strategy for Mechanical Game Playing , 1963, JACM.

[42]  Michael Buro Toward Opening Book Learning , 1999, J. Int. Comput. Games Assoc..

[43]  Michael Buro,et al.  ProbCut: An Effective Selective Extension of the α-β Algorithm , 1995, J. Int. Comput. Games Assoc..

[44]  Johannes Fürnkranz,et al.  Machine Learning in Computer Chess: The Next Generation , 1996, J. Int. Comput. Games Assoc..

[45]  Michael Buro Statistical Feature Combination for the Evaluation of Game Positions , 1995, J. Artif. Intell. Res..

[46]  Carl Ebeling,et al.  Pattern Knowledge and Search: The SUPREM Architecture , 1989, Artif. Intell..

[47]  Christian Donninger,et al.  Null Move and Deep Search , 1993, J. Int. Comput. Games Assoc..

[48]  Donald F. Beal,et al.  Learning Piece Values Using Temporal Differences , 1997, J. Int. Comput. Games Assoc..

[49]  Arthur L. Samuel,et al.  Some studies in machine learning using the game of checkers , 2000, IBM J. Res. Dev..

[50]  David J. Slate,et al.  Chess 4.5-The Northwestern University chess program , 1988 .

[51]  Jonathan Schaeffer,et al.  Domain-Dependent Single-Agent Search Enhancements , 1999, IJCAI.

[52]  Jonathan Schaeffer,et al.  Computers, Chess, and Cognition , 2011, Springer New York.

[53]  Karl Weinmeister,et al.  PROVERB: The Probabilistic Cruciverbalist , 1999, AAAI/IAAI.

[54]  R M Hyatt,et al.  Cray Blitz , 1986 .

[55]  Feng-hsiung Hsu Large scale parallelization of alpha-beta search: an algorithmic and architectural study , 1989 .

[56]  K. Thompson,et al.  COMPUTER CHESS STRENGTH , 1982 .

[57]  Jonathan Schaeffer,et al.  One jump ahead - challenging human supremacy in checkers , 1997, J. Int. Comput. Games Assoc..

[58]  Ken Thompson,et al.  Retrograde Analysis of Certain Endgames , 1986, J. Int. Comput. Games Assoc..

[59]  Donald F. Beal Advances in computer chess , 1986 .

[60]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[61]  T. A. Marsland,et al.  A Review of Game-Tree Pruning , 1986, J. Int. Comput. Games Assoc..

[62]  Donald F. Beal,et al.  A Generalised Quiescence Search Algorithm , 1990, Artif. Intell..

[63]  Ralph Udo Gasser,et al.  Harnessing computational resources for efficient exhaustive search , 1995 .

[64]  Andrew W. Appel,et al.  The world's fastest Scrabble program , 1988, CACM.

[65]  B. V. Bowden,et al.  Faster than thought , 1953 .

[66]  Paul S. Rosenbloom,et al.  A World-Championship-Level Othello Program , 1982, Artif. Intell..

[67]  Nicholas V. Findler,et al.  Studies in machine cognition using the game of poker , 1977, CACM.

[68]  Jonathan Schaeffer,et al.  Opponent Modeling in Poker , 1998, AAAI/IAAI.

[69]  David J. Slate,et al.  A Chess Program that Uses its Transposition Table to Learn from Experience , 1987, J. Int. Comput. Games Assoc..

[70]  Jonathan Schaeffer,et al.  Learning to Play Strong Poker , 1999, ICML 1999.

[71]  T. Scherzer,et al.  Learning in Bebe , 1990 .

[72]  Murray Campbell,et al.  Singular Extensions: Adding Selectivity to Brute-Force Searching , 1990, Artif. Intell..

[73]  Feng-Hsiung Hsu,et al.  IBM's Deep Blue Chess grandmaster chips , 1999, IEEE Micro.

[74]  T. Anthony Marsland,et al.  Parallel Search of Strongly Ordered Game Trees , 1982, CSUR.

[75]  Hans J. Berliner,et al.  Backgammon Computer Program Beats World Champion , 1980 .

[76]  F. Hsu,et al.  A Grandmaster Chess Machine , 1990 .

[77]  Michael Buro,et al.  The Othello Match of the Year: Takeshi Murakami vs. Logistello , 1997, J. Int. Comput. Games Assoc..

[78]  L. Victor Allis,et al.  A Knowledge-Based Approach of Connect-Four , 1988, J. Int. Comput. Games Assoc..

[79]  Arthur L. Samuel,et al.  Programming Computers to Play Games , 1960, Adv. Comput..

[80]  Jonathan Schaeffer,et al.  A World Championship Caliber Checkers Program , 1992, Artif. Intell..

[81]  Claude E. Shannon,et al.  Programming a computer for playing chess , 1950 .

[82]  Jonathan Schaeffer,et al.  The History Heuristic and Alpha-Beta Search Enhancements in Practice , 1989, IEEE Trans. Pattern Anal. Mach. Intell..