On modelling thermal oxidation of Silicon I: Theory

This work focuses on a new mathematical framework to model the process of thermal oxidation in silicon. The mathematical model is derived from the fundamental conservation equations of mechanics. The mass balance law provides the description of the oxidant transport and the Si–SiO2 interface motion, and momentum balance provides the framework to model the displacements and stresses in the bulk and the oxide. The displacements define the geometry of the final oxide structure. The large expansion is treated within a mathematically exact formulation following a split of the deformation gradient. A thermodynamically consistent constitutive equation for silicon dioxide is suggested to represent recent experimental data. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  P. Griffin,et al.  Modeling stress effects on thin oxide growth kinetics , 1997, SISPAD '97. 1997 International Conference on Simulation of Semiconductor Processes and Devices. Technical Digest.

[2]  S. Dunham,et al.  A Viscous Compressible Model for Stress Generation/Relaxation in SiO2 , 1997 .

[3]  Gerhard A. Holzapfel,et al.  A new viscoelastic constitutive model for continuous media at finite thermomechanical changes , 1996 .

[4]  C. Rafferty,et al.  Stress effects in silicon oxidation—simulation and experiments , 1990 .

[5]  R. LeVeque Numerical methods for conservation laws , 1990 .

[6]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[7]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[8]  J. C. Simo,et al.  On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .

[9]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[10]  A. Evans,et al.  Oxidation induced stresses and some effects on the behavior of oxide films , 1983 .

[11]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[12]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[13]  E. P. EerNisse,et al.  Stress in thermal SiO2 during growth , 1979 .

[14]  Karl S. Pister,et al.  Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids , 1975 .

[15]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[16]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[17]  Peter P. Gillis,et al.  Dynamical Dislocation Theory of Crystal Plasticity. I. The Yield Stress , 1965 .

[18]  Bernard D. Coleman,et al.  Thermodynamics of materials with memory , 1964 .

[19]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[20]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[21]  D. Vermilyea On the mechanism of the oxidation of metals , 1957 .

[22]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .