Robust visual tracking via a hybrid correlation filter

In this paper, we propose a hybrid correlation filter based tracking method which depends on coupled interactions between a global filter and two local filters. Specifically, a local kernel feature with Gaussian curvature is developed to encode object appearance. Then the global filter and the two local filters independently track the target. The peak-to-sidelobe ratio (PSR) is employed to measure the reliability of the tracking results. Next, the global filter and the two local filters jointly determine the target position. In this way, the proposed hybrid model deals well with challenging situations, e.g., partial occlusion and scale changes. Experiments on large benchmark datasets show that our method performs favorably against state-of-the-art trackers.

[1]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[2]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Huchuan Lu,et al.  Pixel-Wise Spatial Pyramid-Based Hybrid Tracking , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[5]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[6]  Yong Wang,et al.  Visual tracking via robust multi-task multi-feature joint sparse representation , 2016, Multimedia Tools and Applications.

[7]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[8]  Yuwu Lu,et al.  Adaptive weighted fusion: A novel fusion approach for image classification , 2015, Neurocomputing.

[9]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[11]  Michael Felsberg,et al.  Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ponnuthurai N. Suganthan,et al.  Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article] , 2016, IEEE Computational Intelligence Magazine.

[13]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Bernard Ghanem,et al.  Target Response Adaptation for Correlation Filter Tracking , 2016, ECCV.

[18]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[21]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[25]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Jian Yang,et al.  A New Discriminative Sparse Representation Method for Robust Face Recognition via $l_{2}$ Regularization , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[28]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[29]  Jeng-Shyang Pan,et al.  From the idea of "sparse representation" to a representation-based transformation method for feature extraction , 2013, Neurocomputing.

[30]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Li Zhang,et al.  Discriminative Low-Rank Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[33]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[35]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Suk Ho Lee,et al.  Noise removal with Gauss curvature-driven diffusion , 2005, IEEE Trans. Image Process..

[37]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Selim Esedoglu,et al.  Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..

[39]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[40]  Simon Lucey,et al.  Correlation filters with limited boundaries , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[42]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[43]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Peyman Milanfar,et al.  Face Verification Using the LARK Representation , 2011, IEEE Transactions on Information Forensics and Security.

[46]  Margrit Betke,et al.  Randomized Ensemble Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[47]  Dit-Yan Yeung,et al.  Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data , 2014, ICML.

[48]  Junseok Kwon,et al.  Tracking by Sampling and IntegratingMultiple Trackers , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Simon Lucey,et al.  Multi-channel Correlation Filters , 2013, 2013 IEEE International Conference on Computer Vision.

[50]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[51]  Suk-Ho Lee,et al.  Noise removal with Gauss curvature-driven diffusion , 2005, IEEE Transactions on Image Processing.