ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan
暂无分享,去创建一个
[1] B. Yardley,et al. An Introduction to Metamorphic Petrology , 2019, Essentials of Igneous and Metamorphic Petrology.
[2] Michael Fleischer,et al. Fleischer's glossary of mineral species, 1999 , 1999 .
[3] Lawrence C. Rowan,et al. Spectral reflectance of carbonatites and related alkalic igneous rocks; selected samples from four North American localities , 1986 .
[4] N. Azimi,et al. Geology and mineral resources of the early Quaternary Khanneshin carbonatite volcano (Southern Afghanistan) , 1978 .
[5] W. Farrand. Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .
[6] L. Rowan,et al. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 2005 .
[7] Shuichi Rokugawa,et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..
[8] Simon J. Hook,et al. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .
[9] Hiroyuki Fujisada,et al. Design and performance of ASTER instrument , 1995, Remote Sensing.
[10] G. Hunt. SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .
[11] L. Rowan,et al. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .
[12] Lawrence C. Rowan,et al. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex , 1995 .
[13] P. Switzer,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .
[14] L. Rowan. Analysis of simulated advanced spaceborne thermal emission and reflection (ASTER) radiometer data of the Iron Hill, Colorado, study area for mapping lithologies , 1998 .
[15] Chein-I Chang,et al. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..
[16] R. E. Walker,et al. Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .
[17] T. Cudahy,et al. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .
[18] Lawrence C. Rowan,et al. Remote mineralogic and lithologic mapping of the ice river alkaline complex , 1996 .
[19] L. Rowan,et al. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .
[20] J. B. Dawson. Carbonatite-Nephelinite Volcanism , 1978 .
[21] Lawrence C. Rowan,et al. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .
[22] Kurtis J. Thome,et al. Vicarious calibration of the ASTER SWIR sensor including crosstalk correction , 2005, SPIE Optics + Photonics.
[23] L. Rowan,et al. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado , 1996 .
[24] Alan R. Gillespie,et al. Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1996, Optics & Photonics.
[25] Yoram J. Kaufman,et al. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .