Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations

In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.

[1]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[2]  Charbel Farhat,et al.  Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..

[3]  S. Nicaise,et al.  Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system , 2006 .

[4]  Ralf Hiptmair,et al.  STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS , 2011 .

[5]  J. Melenk On Approximation in Meshless Methods , 2005 .

[6]  Olivier Cessenat,et al.  Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques : problèmes de Helmholtz 2D et de Maxwell 3D , 1996 .

[7]  Ralf Hiptmair,et al.  Mixed Plane Wave Discontinuous Galerkin Methods , 2009 .

[8]  Tomi,et al.  THE USE OF PLANE WAVES TO APPROXIMATE WAVE PROPAGATION IN ANISOTROPIC MEDIA , 2007 .

[9]  Ralf Hiptmair,et al.  Vekua theory for the Helmholtz operator , 2011 .

[10]  D. Schötzau,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[11]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[12]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[13]  G. Gabard,et al.  A comparison of wave‐based discontinuous Galerkin, ultra‐weak and least‐square methods for wave problems , 2011 .

[14]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[15]  C. Schwab,et al.  Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Ilaria Perugia,et al.  Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..

[19]  Gwénaël Gabard,et al.  Discontinuous Galerkin methods with plane waves for time-harmonic problems , 2007, J. Comput. Phys..

[20]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[21]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[22]  D. Schötzau,et al.  hp -DGFEM for Maxwell’s equations , 2003 .

[23]  Charbel Farhat,et al.  Three‐dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid‐frequency Helmholtz problems , 2006 .

[24]  S. Brenner,et al.  A LOCALLY DIVERGENCE-FREE NONCONFORMING FINITE ELEMENT METHOD FOR THE REDUCED TIME-HARMONIC MAXWELL EQUATIONS , 2006 .

[25]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[26]  Zsolt Badics,et al.  Trefftz discontinuous Galerkin methods for time-harmonic electromagnetic and ultrasound transmission problems , 2008 .

[27]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[28]  I. Tsukerman,et al.  Electromagnetic applications of a new finite-difference calculus , 2005, IEEE Transactions on Magnetics.

[29]  Peter Monk,et al.  ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION OF THE HELMHOLTZ EQUATION , 2007 .

[30]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[31]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[32]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[33]  Ralf Hiptmair,et al.  Plane wave approximation of homogeneous Helmholtz solutions , 2011 .

[34]  A. Bu On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[35]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[36]  Susanne C. Brenner,et al.  Nonconforming Maxwell Eigensolvers , 2009, J. Sci. Comput..

[37]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[38]  Peter Monk,et al.  Solving Maxwell's equations using the ultra weak variational formulation , 2007, J. Comput. Phys..

[39]  Mark Embree,et al.  The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem , 2006 .

[40]  Len Bos,et al.  Quantitative Approximation Theorems for Elliptic Operators , 1996 .

[41]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[42]  M. Ainsworth Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  Pierre Ladevèze,et al.  THE MULTISCALE VTCR APPROACH APPLIED TO ACOUSTICS PROBLEMS , 2008 .

[45]  Ulrich Langer,et al.  From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes , 2009 .

[46]  J. Kaipio,et al.  Computational aspects of the ultra-weak variational formulation , 2002 .

[47]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[48]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .

[49]  Susanne C. Brenner,et al.  A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations , 2007, Math. Comput..